File size: 11,110 Bytes
a526622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import argparse
import torch
import os
import json
from tqdm import tqdm

IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
IMAGE_PLACEHOLDER = "<image-placeholder>"

# Added by Ferret
DEFAULT_REGION_FEA_TOKEN = "<region_fea>"
VOCAB_IMAGE_W = 1000
VOCAB_IMAGE_H = 1000
from conversation import conv_templates, SeparatorStyle
from builder import load_pretrained_model

from mm_utils import tokenizer_image_token, process_images

from PIL import Image
import math
import pdb
import numpy as np
from copy import deepcopy
from functools import partial

def disable_torch_init():
    """
    Disable the redundant torch default initialization to accelerate model creation.
    """
    import torch
    setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
    setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)

def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]

def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]

def generate_mask_for_feature(coor, raw_w, raw_h, mask=None):
    if mask is not None:
        assert mask.shape[0] == raw_w and mask.shape[1] == raw_h
    coor_mask = np.zeros((raw_w, raw_h))
    # Assume it samples a point.
    if len(coor) == 2:
        # Define window size
        span = 5
        # Make sure the window does not exceed array bounds
        x_min = max(0, coor[0] - span)
        x_max = min(raw_w, coor[0] + span + 1)
        y_min = max(0, coor[1] - span)
        y_max = min(raw_h, coor[1] + span + 1)
        coor_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
        assert (coor_mask==1).any(), f"coor: {coor}, raw_w: {raw_w}, raw_h: {raw_h}"
    elif len(coor) == 4:
        # Box input or Sketch input.
        coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1
        if mask is not None:
            coor_mask = coor_mask * mask
    coor_mask = torch.from_numpy(coor_mask)
    try:
        assert len(coor_mask.nonzero()) != 0
    except:
        pdb.set_trace()
    return coor_mask

def get_task_from_file(file):
    box_in_tasks = ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0']
    # box_out_tasks = ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction']
    # no_box = ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4']
    if any(task in file for task in box_in_tasks):
        return 'box_in'
    else:
        return 'no_box_in'
    # elif any(task in file for task in box_out_tasks):
    #     return 'box_out'
    # elif any(task in file for task in no_box):
    #     return 'no_box'
    
def get_bbox_coor(box, ratio_w, ratio_h):
    return box[0] * ratio_w, box[1] * ratio_h, box[2] * ratio_w, box[3] * ratio_h

def get_model_name_from_path(model_path):
    if 'gemma' in model_path:
        return 'ferret_gemma'
    elif 'llama' or 'vicuna' in model_path:
        return 'ferret_llama'
    else:
        raise ValueError(f"No model matched for {model_path}")

class UIData:
    def __init__(self, data_path, image_path, args) -> None:
        self.obj_list = json.load(open(data_path, 'r'))
        self.image_path = image_path
        self.args = args
        self._ids = range(len(self.obj_list))
        self.task = get_task_from_file(data_path)

    @property
    def ids(self):
        return deepcopy(self._ids)

    def __getitem__(self, idx):
        i = self.obj_list[idx]

        # image stuff
        image_path_i = os.path.join(self.image_path, i['image'].split('/')[-1])
        image = Image.open(image_path_i).convert('RGB')

        q_turn = i['conversations'][0]['value']
        if "<image>" in q_turn:
            prompt = q_turn.split('\n')[1]
        else:
            prompt = q_turn
        i['question'] = prompt
        i['region_masks'] = None

        if self.task == 'box_in':
            ratio_w = VOCAB_IMAGE_W * 1.0 / i['image_w']
            ratio_h = VOCAB_IMAGE_H * 1.0 / i['image_h']

            box = i['box_x1y1x2y2'][0][0]
            box_x1, box_y1, box_x2, box_y2 = box
            box_x1_textvocab, box_y1_textvocab, box_x2_textvocab, box_y2_textvocab = get_bbox_coor(box=box, ratio_h=ratio_h, ratio_w=ratio_w)

            if self.args.region_format == 'box':
                region_coordinate_raw = [box_x1, box_y1, box_x2, box_y2]
                if args.add_region_feature:
                    i['question'] = prompt.replace('<bbox_location0>', '[{}, {}, {}, {}] {}'.format(int(box_x1_textvocab), int(box_y1_textvocab), int(box_x2_textvocab), int(box_y2_textvocab), DEFAULT_REGION_FEA_TOKEN))
                    generated_mask = generate_mask_for_feature(region_coordinate_raw, raw_w=i['image_w'], raw_h=i['image_h'], mask=None)
                    i['region_masks'] = [generated_mask]
                else:
                    i['question'] = prompt.replace('<bbox_location0>', '[{}, {}, {}, {}]'.format(int(box_x1_textvocab), int(box_y1_textvocab), int(box_x2_textvocab), int(box_y2_textvocab)))
            else:
                raise NotImplementedError(f'{self.args.region_format} is not supported.')

        return image, i, image.size

def eval_model(args):
    # Data
    dataset = UIData(data_path=args.data_path, image_path=args.image_path, args=args)
    data_ids = dataset.ids

    # Model
    disable_torch_init()
    model_path = os.path.expanduser(args.model_path)
    model_name = get_model_name_from_path(model_path)
    tokenizer, model, image_processor, context_len = \
        load_pretrained_model(model_path, args.model_base, model_name)

    chunk_data_ids = get_chunk(data_ids, args.num_chunks, args.chunk_idx)
    answers_folder = os.path.expanduser(args.answers_file)
    os.makedirs(answers_folder, exist_ok=True)
    answers_file = os.path.join(answers_folder, f'{args.chunk_idx}_of_{args.num_chunks}.jsonl')
    ans_file = open(answers_file, "w")

    for i, id in enumerate(tqdm(chunk_data_ids)):
        img, ann, image_size = dataset[id]
        image_path = ann['image']
        qs = ann["question"]
        cur_prompt = qs

        if "<image>" in qs:
            qs = qs.split('\n')[1]

        if model.config.mm_use_im_start_end:
            qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
        else:
            qs = DEFAULT_IMAGE_TOKEN + '\n' + qs

        conv = conv_templates[args.conv_mode].copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
        
        if model.config.image_aspect_ratio == "square_nocrop":
            image_tensor = image_processor.preprocess(img, return_tensors='pt', do_resize=True, 
                                                  do_center_crop=False, size=[args.image_h, args.image_w])['pixel_values'][0]
        elif model.config.image_aspect_ratio == "anyres":
            image_process_func = partial(image_processor.preprocess, return_tensors='pt', do_resize=True, do_center_crop=False, size=[args.image_h, args.image_w])
            image_tensor = process_images([img], image_processor, model.config, image_process_func=image_process_func)[0]
        else:
            image_tensor = process_images([img], image_processor, model.config)[0]

        images = image_tensor.unsqueeze(0).to(args.data_type).cuda()

        region_masks = ann['region_masks']
        
        if region_masks is not None:
            region_masks = [[region_mask_i.cuda().half() for region_mask_i in region_masks]]
        else:
            region_masks = None

        with torch.inference_mode():
            model.orig_forward = model.forward
            model.forward = partial(
                model.orig_forward,
                region_masks=region_masks
            )
            output_ids = model.generate(
                input_ids,
                images=images,
                region_masks=region_masks,
                image_sizes=[image_size],
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
                top_p=args.top_p,
                num_beams=args.num_beams,
                max_new_tokens=args.max_new_tokens,
                use_cache=True)
            model.forward = model.orig_forward

        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
        outputs = outputs.strip()

        if 'label' in ann:
            label = ann['label']
        elif len(ann['conversations']) > 1:
            label = ann['conversations'][1]['value']
        else: 
            label = None

        ans_file.write(json.dumps({"id":ann['id'],     # +1 offset   
                                    "image_path":image_path,
                                    "prompt": cur_prompt,
                                    "text": outputs,
                                    "label": label,
                                   }) + "\n")
        ans_file.flush()
    ans_file.close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_path", type=str, default="facebook/opt-350m")
    parser.add_argument("--vision_model_path", type=str, default=None)
    parser.add_argument("--model_base", type=str, default=None)
    parser.add_argument("--image_path", type=str, default="")
    parser.add_argument("--data_path", type=str, default="")
    parser.add_argument("--answers_file", type=str, default="")
    parser.add_argument("--conv_mode", type=str, default="ferret_gemma_instruct",
                        help="[ferret_gemma_instruct,ferret_llama_3,ferret_vicuna_v1]")
    parser.add_argument("--num_chunks", type=int, default=1)
    parser.add_argument("--chunk_idx", type=int, default=0)
    parser.add_argument("--image_w", type=int, default=336)  #  224
    parser.add_argument("--image_h", type=int, default=336)  #  224
    parser.add_argument("--add_region_feature", action="store_true")
    parser.add_argument("--region_format", type=str, default="point", choices=["point", "box", "segment", "free_shape"])
    parser.add_argument("--no_coor", action="store_true")
    parser.add_argument("--temperature", type=float, default=0.001)
    parser.add_argument("--top_p", type=float, default=None)
    parser.add_argument("--num_beams", type=int, default=1)
    parser.add_argument("--max_new_tokens", type=int, default=1024)
    parser.add_argument("--data_type", type=str, default='fp16', choices=['fp16', 'bf16', 'fp32'])
    args = parser.parse_args()

    if args.data_type == 'fp16':
        args.data_type = torch.float16
    elif args.data_type == 'bf16':
        args.data_type = torch.bfloat16
    else:
        args.data_type = torch.float32
    
    eval_model(args)