File size: 5,871 Bytes
a526622
 
 
 
 
151137d
a526622
 
 
 
151137d
 
 
 
 
 
 
 
 
 
 
a526622
 
151137d
 
 
 
 
 
 
 
a526622
 
151137d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a526622
 
151137d
 
 
 
a526622
151137d
a526622
151137d
a526622
151137d
a526622
151137d
a526622
151137d
a526622
151137d
 
 
 
 
a526622
151137d
a526622
151137d
 
 
 
 
 
 
a526622
 
 
 
 
 
151137d
 
 
 
 
a526622
151137d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a526622
151137d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
from constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from conversation import conv_templates, SeparatorStyle
from builder import load_pretrained_model
from utils import disable_torch_init
from mm_utils import process_images, tokenizer_image_token, get_model_name_from_path
from PIL import Image
import requests
from io import BytesIO
from transformers import TextStreamer
import spaces
from functools import partial
import traceback
import sys
# def load_image(image_file):
#     if image_file.startswith('http://') or image_file.startswith('https://'):
#         response = requests.get(image_file)
#         image = Image.open(BytesIO(response.content)).convert('RGB')
#     else:
#         image = Image.open(image_file).convert('RGB')
#     return image

def load_image(image_file):
    print("the image file : ", image_file)
    
    image = Image.open(image_file).convert('RGB')

    if image is None:
        print("image is None")
        sys.exit("Aborting program: Image is None.")
    
    return image

@spaces.GPU()
def run_inference(
    model_path,
    image_file,
    prompt_text,
    model_base=None,
    device="cuda",
    conv_mode=None,
    temperature=0.2,
    max_new_tokens=512,
    load_8bit=False,
    load_4bit=False,
    debug=False
):
    # Model initialization
    disable_torch_init()

    model_name = get_model_name_from_path(model_path)
    tokenizer, model, image_processor, context_len = load_pretrained_model(
        model_path, model_base, model_name, load_8bit, load_4bit
    )

    # Determine conversation mode
    if "llama-2" in model_name.lower():
        conv_mode_inferred = "llava_llama_2"
    elif "mistral" in model_name.lower():
        conv_mode_inferred = "mistral_instruct"
    elif "v1.6-34b" in model_name.lower():
        conv_mode_inferred = "chatml_direct"
    elif "v1" in model_name.lower():
        conv_mode_inferred = "llava_v1"
    elif "mpt" in model_name.lower():
        conv_mode_inferred = "mpt"
    elif "gemma" in model_name.lower():
        conv_mode_inferred = "ferret_gemma_instruct"
    elif "llama" in model_name.lower():
        conv_mode_inferred = "ferret_llama_3"
    else:
        conv_mode_inferred = "llava_v0"

    # Use user-specified conversation mode if provided
    conv_mode = conv_mode or conv_mode_inferred

    if conv_mode != conv_mode_inferred:
        print(f'[WARNING] the auto inferred conversation mode is {conv_mode_inferred}, while `conv_mode` is {conv_mode}, using {conv_mode}')

    conv = conv_templates[conv_mode].copy()

    if "mpt" in model_name.lower():
        roles = ('user', 'assistant')
    else:
        roles = conv.roles

    # Load and process image
    print("loading image", image_file)
    image = load_image(image_file)
    if image is None:
        print("image is None")
    image_size = image.size
    image_h = 336  # Height of the image
    image_w = 336
    #ERROR
    # image_tensor = process_images([image], image_processor, model.config)
    # if type(image_tensor) is list:
    #     image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
    # else:
    #     image_tensor = image_tensor.to(model.device, dtype=torch.float16)
    if model.config.image_aspect_ratio == "square_nocrop":
            image_tensor = image_processor.preprocess(image, return_tensors='pt', do_resize=True, 
                                                  do_center_crop=False, size=[image_h, image_w])['pixel_values'][0]
    elif model.config.image_aspect_ratio == "anyres":
        image_process_func = partial(image_processor.preprocess, return_tensors='pt', do_resize=True, do_center_crop=False, size=[image_h, image_w])
        image_tensor = process_images([image], image_processor, model.config, image_process_func=image_process_func)[0]
    else:
        image_tensor = process_images([image], image_processor, model.config)[0]

    if model.dtype == torch.float16:
        image_tensor = image_tensor.half()  # Convert image tensor to float16
        data_type = torch.float16
    else:
        image_tensor = image_tensor.float()  # Keep it in float32
        data_type = torch.float32

    # Now, add the batch dimension and move to GPU
    images = image_tensor.unsqueeze(0).to(data_type).cuda()


    # Process the first message with the image
    if model.config.mm_use_im_start_end:
        prompt_text = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + prompt_text
    else:
        prompt_text = DEFAULT_IMAGE_TOKEN + '\n' + prompt_text

    # Prepare conversation
    conv.append_message(conv.roles[0], prompt_text)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()

    input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    print("image size: ", image_size)
    # Generate the model's response
    
    with torch.inference_mode():
        output_ids = model.generate(
            input_ids,
            images=images,
            image_sizes=[image_size],
            do_sample=True if temperature > 0 else False,
            temperature=temperature,
            max_new_tokens=max_new_tokens,
            streamer=streamer,
            num_beams=1,
            use_cache=True
        )

    # Decode and return the output
    outputs = tokenizer.decode(output_ids[0]).strip()
    conv.messages[-1][-1] = outputs

    if debug:
        print("\n", {"prompt": prompt, "outputs": outputs}, "\n")

    return outputs


# Example usage:
# response = run_inference("path_to_model", "path_to_image", "your_prompt")
# print(response)