File size: 6,540 Bytes
dab342a
2d44882
dab342a
e55ba48
 
 
 
dab342a
 
 
 
 
 
 
 
 
 
 
e55ba48
dab342a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import gradio as gr
from llm_rs import AutoModel, SessionConfig, GenerationConfig, Precision, KnownModels

# repo_name = "TheBloke/WizardCoder-15B-1.0-GGML"
# file_name = "WizardCoder-15B-1.0.ggmlv3.q5_1.bin"
repo_name = "rustformers/mpt-7b-ggml"
file_name = "mpt-7b-instruct-q5_1-ggjt.bin"

examples = [
    "Write a travel blog about a 3-day trip to Thailand.",
    "Tell me a short story about a robot that has a nice day.",
    "Compose a tweet to congratulate rustformers on the launch of their HuggingFace Space.",
    "Explain how a candle works to a 6-year-old in a few sentences.",
    "What are some of the most common misconceptions about birds?",
    "Explain why the Rust programming language is so popular.",
]

session_config = SessionConfig(threads=2,batch_size=2)
model = AutoModel.from_pretrained(repo_name, model_file=file_name, model_type=KnownModels.Mpt, session_config=session_config,verbose=True)

def process_stream(instruction, temperature, top_p, top_k, max_new_tokens, seed):

    prompt=f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
Answer:"""
    generation_config = GenerationConfig(seed=seed,temperature=temperature,top_p=top_p,top_k=top_k,max_new_tokens=max_new_tokens)
    response = ""
    streamer = model.stream(prompt=prompt,generation_config=generation_config)
    for new_text in streamer:
        response += new_text
        yield response


with gr.Blocks(
    theme=gr.themes.Soft(),
    css=".disclaimer {font-variant-caps: all-small-caps;}",
) as demo:
    gr.Markdown(
        """<h1><center>MPT-7B-Instruct on CPU in Rust 🦀</center></h1>

        This demo uses the [rustformers/llm](https://github.com/rustformers/llm) library via [llm-rs](https://github.com/LLukas22/llm-rs-python) to execute [MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct) on 2 CPU cores.
        """
    )
    with gr.Row():
        with gr.Column():
            with gr.Row():
                instruction = gr.Textbox(
                    placeholder="Enter your question or instruction here",
                    label="Question/Instruction",
                    elem_id="q-input",
                )
            with gr.Accordion("Advanced Options:", open=False):
                with gr.Row():
                    with gr.Column():
                        with gr.Row():
                            temperature = gr.Slider(
                                label="Temperature",
                                value=0.8,
                                minimum=0.1,
                                maximum=1.0,
                                step=0.1,
                                interactive=True,
                                info="Higher values produce more diverse outputs",
                            )
                    with gr.Column():
                        with gr.Row():
                            top_p = gr.Slider(
                                label="Top-p (nucleus sampling)",
                                value=0.95,
                                minimum=0.0,
                                maximum=1.0,
                                step=0.01,
                                interactive=True,
                                info=(
                                    "Sample from the smallest possible set of tokens whose cumulative probability "
                                    "exceeds top_p. Set to 1 to disable and sample from all tokens."
                                ),
                            )
                    with gr.Column():
                        with gr.Row():
                            top_k = gr.Slider(
                                label="Top-k",
                                value=40,
                                minimum=5,
                                maximum=80,
                                step=1,
                                interactive=True,
                                info="Sample from a shortlist of top-k tokens — 0 to disable and sample from all tokens.",
                            )
                    with gr.Column():
                        with gr.Row():
                            max_new_tokens = gr.Slider(
                                label="Maximum new tokens",
                                value=256,
                                minimum=0,
                                maximum=1024,
                                step=5,
                                interactive=True,
                                info="The maximum number of new tokens to generate",
                            )

                    with gr.Column():
                        with gr.Row():
                            seed = gr.Number(
                                label="Seed",
                                value=42,
                                interactive=True,
                                info="The seed to use for the generation",
                                precision=0
                            )
    with gr.Row():
        submit = gr.Button("Submit")
    with gr.Row():
        with gr.Box():
            gr.Markdown("**MPT-7B-Instruct**")
            output_7b = gr.Markdown()

    with gr.Row():
        gr.Examples(
            examples=examples,
            inputs=[instruction],
            cache_examples=False,
            fn=process_stream,
            outputs=output_7b,
        )
    with gr.Row():
        gr.Markdown(
            "Disclaimer: MPT-7B can produce factually incorrect output, and should not be relied on to produce "
            "factually accurate information. MPT-7B was trained on various public datasets; while great efforts "
            "have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
            "biased, or otherwise offensive outputs.",
            elem_classes=["disclaimer"],
        )
    with gr.Row():
        gr.Markdown(
            "[Privacy policy](https://gist.github.com/samhavens/c29c68cdcd420a9aa0202d0839876dac)",
            elem_classes=["disclaimer"],
        )

    submit.click(
        process_stream,
        inputs=[instruction, temperature, top_p, top_k, max_new_tokens,seed],
        outputs=output_7b,
    )
    instruction.submit(
        process_stream,
        inputs=[instruction, temperature, top_p, top_k, max_new_tokens,seed],
        outputs=output_7b,
    )

demo.queue(max_size=4, concurrency_count=1).launch(debug=True)