Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,177 +1,283 @@
|
|
1 |
-
import os
|
2 |
-
import gc
|
3 |
-
import gradio as gr
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import json
|
7 |
-
import spaces
|
8 |
-
import config
|
9 |
-
import utils
|
10 |
import logging
|
11 |
from PIL import Image, PngImagePlugin
|
12 |
from datetime import datetime
|
13 |
-
from diffusers import
|
|
|
14 |
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
18 |
-
DESCRIPTION = "
|
19 |
if not torch.cuda.is_available():
|
20 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
|
21 |
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
|
22 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
23 |
-
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
24 |
-
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
|
25 |
-
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
|
26 |
-
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
27 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
28 |
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
@spaces.GPU
|
35 |
def generate(
|
36 |
-
prompt: str,
|
37 |
-
negative_prompt: str = "",
|
38 |
-
seed: int = 0,
|
39 |
-
custom_width: int = 1024,
|
40 |
custom_height: int = 1024,
|
41 |
guidance_scale: float = 7.0,
|
42 |
num_inference_steps: int = 30,
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
progress=gr.Progress(track_tqdm=True),
|
45 |
) -> list:
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
if torch.cuda.is_available():
|
63 |
-
pipe =
|
64 |
logger.info("Loaded on Device!")
|
65 |
else:
|
66 |
pipe = None
|
67 |
|
|
|
|
|
|
|
68 |
with gr.Blocks(css="style.css") as demo:
|
69 |
title = gr.HTML(
|
70 |
f"""<h1><span>{DESCRIPTION}</span></h1>""",
|
71 |
elem_id="title",
|
72 |
)
|
73 |
gr.Markdown(
|
74 |
-
f"""Gradio demo for [
|
75 |
elem_id="subtitle",
|
76 |
)
|
77 |
gr.DuplicateButton(
|
78 |
-
value="Duplicate Space for private use",
|
79 |
-
elem_id="duplicate-button",
|
80 |
-
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
81 |
-
)
|
82 |
-
with gr.Group():
|
83 |
-
with gr.Row():
|
84 |
-
prompt = gr.Text(
|
85 |
-
label="Prompt",
|
86 |
-
show_label=False,
|
87 |
-
max_lines=5,
|
88 |
-
placeholder="Enter your prompt",
|
89 |
-
container=False,
|
90 |
-
)
|
91 |
-
run_button = gr.Button(
|
92 |
-
"Generate",
|
93 |
-
variant="primary",
|
94 |
-
scale=0
|
95 |
-
)
|
96 |
-
result = gr.Gallery(
|
97 |
-
label="Result",
|
98 |
-
columns=1,
|
99 |
-
preview=True,
|
100 |
-
show_label=False
|
101 |
-
)
|
102 |
-
with gr.Accordion(label="Advanced Settings", open=False):
|
103 |
-
negative_prompt = gr.Text(
|
104 |
-
label="Negative Prompt",
|
105 |
-
max_lines=5,
|
106 |
placeholder="Enter a negative prompt",
|
107 |
value=""
|
108 |
)
|
109 |
-
|
110 |
-
label="
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
)
|
116 |
-
custom_height = gr.Slider(
|
117 |
-
label="Height",
|
118 |
-
minimum=MIN_IMAGE_SIZE,
|
119 |
-
maximum=MAX_IMAGE_SIZE,
|
120 |
-
step=64,
|
121 |
-
value=1024,
|
122 |
)
|
123 |
-
with gr.
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
)
|
131 |
-
|
132 |
-
label="
|
133 |
minimum=1,
|
134 |
-
maximum=
|
135 |
-
step=1,
|
136 |
-
value=
|
|
|
137 |
)
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
140 |
)
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
gr.Examples(
|
143 |
-
examples=
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
inputs=prompt,
|
149 |
-
outputs=result,
|
|
|
|
|
150 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
inputs = [
|
152 |
prompt,
|
153 |
negative_prompt,
|
154 |
-
seed,
|
155 |
-
custom_width,
|
156 |
custom_height,
|
157 |
guidance_scale,
|
158 |
num_inference_steps,
|
159 |
-
|
|
|
|
|
|
|
|
|
160 |
]
|
|
|
161 |
prompt.submit(
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
fn=generate,
|
163 |
inputs=inputs,
|
164 |
-
outputs=[result,
|
|
|
165 |
)
|
166 |
negative_prompt.submit(
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
fn=generate,
|
168 |
inputs=inputs,
|
169 |
-
outputs=[result,
|
|
|
170 |
)
|
171 |
run_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
fn=generate,
|
173 |
inputs=inputs,
|
174 |
-
outputs=[result,
|
|
|
175 |
)
|
176 |
|
177 |
-
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB, show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
from PIL import Image, PngImagePlugin
|
3 |
from datetime import datetime
|
4 |
+
from diffusers.models import AutoencoderKL
|
5 |
+
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
|
6 |
|
7 |
logging.basicConfig(level=logging.INFO)
|
8 |
logger = logging.getLogger(__name__)
|
9 |
|
10 |
+
DESCRIPTION = "RealVis XL"
|
11 |
if not torch.cuda.is_available():
|
12 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
|
13 |
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
|
|
|
|
|
|
|
|
|
|
|
14 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
15 |
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
|
16 |
|
17 |
+
MODEL = os.getenv(
|
18 |
+
"MODEL",
|
19 |
+
"https://huggingface.co/SG161222/RealVisXL_V4.0/blob/main/RealVisXL_V4.0.safetensors",
|
20 |
+
)
|
21 |
+
|
22 |
+
torch.backends.cudnn.deterministic = True
|
23 |
+
torch.backends.cudnn.benchmark = False
|
24 |
+
|
25 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
26 |
+
|
27 |
+
def load_pipeline(model_name):
|
28 |
+
vae = AutoencoderKL.from_pretrained(
|
29 |
+
"madebyollin/sdxl-vae-fp16-fix",
|
30 |
+
torch_dtype=torch.float16,
|
31 |
+
)
|
32 |
+
pipeline = (
|
33 |
+
StableDiffusionXLPipeline.from_single_file
|
34 |
+
if MODEL.endswith(".safetensors")
|
35 |
+
else StableDiffusionXLPipeline.from_pretrained
|
36 |
+
)
|
37 |
+
|
38 |
+
pipe = pipeline(
|
39 |
+
model_name,
|
40 |
+
vae=vae,
|
41 |
+
torch_dtype=torch.float16,
|
42 |
+
custom_pipeline="lpw_stable_diffusion_xl",
|
43 |
+
use_safetensors=True,
|
44 |
+
add_watermarker=False,
|
45 |
+
use_auth_token=HF_TOKEN,
|
46 |
+
variant="fp16",
|
47 |
+
)
|
48 |
+
|
49 |
+
pipe.to(device)
|
50 |
+
return pipe
|
51 |
|
52 |
@spaces.GPU
|
53 |
def generate(
|
|
|
|
|
|
|
|
|
54 |
custom_height: int = 1024,
|
55 |
guidance_scale: float = 7.0,
|
56 |
num_inference_steps: int = 30,
|
57 |
+
sampler: str = "DPM++ 2M SDE Karras",
|
58 |
+
aspect_ratio_selector: str = "1024 x 1024",
|
59 |
+
use_upscaler: bool = False,
|
60 |
+
upscaler_strength: float = 0.55,
|
61 |
+
upscale_by: float = 1.5,
|
62 |
progress=gr.Progress(track_tqdm=True),
|
63 |
) -> list:
|
64 |
+
generator = utils.seed_everything(seed)
|
65 |
+
|
66 |
+
width, height = utils.aspect_ratio_handler(
|
67 |
+
aspect_ratio_selector,
|
68 |
+
custom_width,
|
69 |
+
custom_height,
|
70 |
+
)
|
71 |
+
|
72 |
+
width, height = utils.preprocess_image_dimensions(width, height)
|
73 |
+
|
74 |
+
backup_scheduler = pipe.scheduler
|
75 |
+
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
|
76 |
+
|
77 |
+
metadata = {
|
78 |
+
"prompt": prompt,
|
79 |
+
"negative_prompt": negative_prompt,
|
80 |
+
"resolution": f"{width} x {height}",
|
81 |
+
"guidance_scale": guidance_scale,
|
82 |
+
"num_inference_steps": num_inference_steps,
|
83 |
+
"seed": seed,
|
84 |
+
"sampler": sampler,
|
85 |
+
"use_upscaler": use_upscaler,
|
86 |
+
"upscaler_strength": upscaler_strength,
|
87 |
+
"upscale_by": upscale_by,
|
88 |
+
}
|
89 |
+
logger.info(json.dumps(metadata, indent=4))
|
90 |
+
|
91 |
+
try:
|
92 |
+
images = pipe(
|
93 |
+
prompt=prompt,
|
94 |
+
negative_prompt=negative_prompt,
|
95 |
+
width=width,
|
96 |
+
height=height,
|
97 |
+
guidance_scale=guidance_scale,
|
98 |
+
num_inference_steps=num_inference_steps,
|
99 |
+
generator=generator,
|
100 |
+
output_type="pil",
|
101 |
+
).images
|
102 |
+
|
103 |
+
if use_upscaler:
|
104 |
+
images = [image.resize((int(width * upscale_by), int(height * upscale_by))) for image in images]
|
105 |
+
|
106 |
+
return images, metadata
|
107 |
+
except Exception as e:
|
108 |
+
logger.exception(f"An error occurred: {e}")
|
109 |
+
raise
|
110 |
+
finally:
|
111 |
+
pipe.scheduler = backup_scheduler
|
112 |
+
utils.free_memory()
|
113 |
|
114 |
if torch.cuda.is_available():
|
115 |
+
pipe = load_pipeline(MODEL)
|
116 |
logger.info("Loaded on Device!")
|
117 |
else:
|
118 |
pipe = None
|
119 |
|
120 |
+
def postprocess_images(images):
|
121 |
+
return images # No caption, just return the images
|
122 |
+
|
123 |
with gr.Blocks(css="style.css") as demo:
|
124 |
title = gr.HTML(
|
125 |
f"""<h1><span>{DESCRIPTION}</span></h1>""",
|
126 |
elem_id="title",
|
127 |
)
|
128 |
gr.Markdown(
|
129 |
+
f"""Gradio demo for ([RealVis XL]https://huggingface.co/SG161222/RealVisXL_V4.0/)""",
|
130 |
elem_id="subtitle",
|
131 |
)
|
132 |
gr.DuplicateButton(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
placeholder="Enter a negative prompt",
|
134 |
value=""
|
135 |
)
|
136 |
+
aspect_ratio_selector = gr.Radio(
|
137 |
+
label="Aspect Ratio",
|
138 |
+
choices=config.aspect_ratios,
|
139 |
+
value="1024 x 1024",
|
140 |
+
container=True,
|
141 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
)
|
143 |
+
with gr.Group(visible=False) as custom_resolution:
|
144 |
+
with gr.Row():
|
145 |
+
custom_width = gr.Slider(
|
146 |
+
label="Width",
|
147 |
+
minimum=MIN_IMAGE_SIZE,
|
148 |
+
maximum=MAX_IMAGE_SIZE,
|
149 |
+
step=8,
|
150 |
+
value=1024,
|
151 |
+
)
|
152 |
+
custom_height = gr.Slider(
|
153 |
+
label="Height",
|
154 |
+
minimum=MIN_IMAGE_SIZE,
|
155 |
+
maximum=MAX_IMAGE_SIZE,
|
156 |
+
step=8,
|
157 |
+
value=1024,
|
158 |
+
)
|
159 |
+
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
|
160 |
+
with gr.Row() as upscaler_row:
|
161 |
+
upscaler_strength = gr.Slider(
|
162 |
+
label="Strength",
|
163 |
+
minimum=0,
|
164 |
+
maximum=1,
|
165 |
+
step=0.05,
|
166 |
+
value=0.55,
|
167 |
+
visible=False,
|
168 |
)
|
169 |
+
upscale_by = gr.Slider(
|
170 |
+
label="Upscale by",
|
171 |
minimum=1,
|
172 |
+
maximum=1.5,
|
173 |
+
step=0.1,
|
174 |
+
value=1.5,
|
175 |
+
visible=False,
|
176 |
)
|
177 |
+
|
178 |
+
sampler = gr.Dropdown(
|
179 |
+
label="Sampler",
|
180 |
+
choices=config.sampler_list,
|
181 |
+
interactive=True,
|
182 |
+
value="DPM++ 2M SDE Karras",
|
183 |
)
|
184 |
+
with gr.Row():
|
185 |
+
seed = gr.Slider(
|
186 |
+
label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0
|
187 |
+
)
|
188 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
189 |
+
with gr.Group():
|
190 |
+
with gr.Row():
|
191 |
+
guidance_scale = gr.Slider(
|
192 |
+
label="Guidance scale",
|
193 |
+
minimum=1,
|
194 |
+
maximum=12,
|
195 |
+
step=0.1,
|
196 |
+
value=7.0,
|
197 |
+
)
|
198 |
+
num_inference_steps = gr.Slider(
|
199 |
+
label="Number of inference steps",
|
200 |
+
minimum=1,
|
201 |
+
maximum=100,
|
202 |
+
step=1,
|
203 |
+
value=28,
|
204 |
+
)
|
205 |
+
with gr.Accordion(label="Generation Parameters", open=False):
|
206 |
+
gr_metadata = gr.JSON(label="Metadata", show_label=False)
|
207 |
gr.Examples(
|
208 |
+
examples=config.examples,
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
|
213 |
inputs=prompt,
|
214 |
+
outputs=[result, gr_metadata],
|
215 |
+
fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs),
|
216 |
+
cache_examples=CACHE_EXAMPLES,
|
217 |
)
|
218 |
+
use_upscaler.change(
|
219 |
+
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
|
220 |
+
inputs=use_upscaler,
|
221 |
+
outputs=[upscaler_strength, upscale_by],
|
222 |
+
queue=False,
|
223 |
+
api_name=False,
|
224 |
+
)
|
225 |
+
aspect_ratio_selector.change(
|
226 |
+
fn=lambda x: gr.update(visible=x == "Custom"),
|
227 |
+
inputs=aspect_ratio_selector,
|
228 |
+
outputs=custom_resolution,
|
229 |
+
queue=False,
|
230 |
+
api_name=False,
|
231 |
+
)
|
232 |
+
|
233 |
inputs = [
|
234 |
prompt,
|
235 |
negative_prompt,
|
|
|
|
|
236 |
custom_height,
|
237 |
guidance_scale,
|
238 |
num_inference_steps,
|
239 |
+
sampler,
|
240 |
+
aspect_ratio_selector,
|
241 |
+
use_upscaler,
|
242 |
+
upscaler_strength,
|
243 |
+
upscale_by,
|
244 |
]
|
245 |
+
|
246 |
prompt.submit(
|
247 |
+
fn=utils.randomize_seed_fn,
|
248 |
+
inputs=[seed, randomize_seed],
|
249 |
+
outputs=seed,
|
250 |
+
queue=False,
|
251 |
+
api_name=False,
|
252 |
+
).then(
|
253 |
fn=generate,
|
254 |
inputs=inputs,
|
255 |
+
outputs=[result, gr_metadata],
|
256 |
+
api_name="run",
|
257 |
)
|
258 |
negative_prompt.submit(
|
259 |
+
fn=utils.randomize_seed_fn,
|
260 |
+
inputs=[seed, randomize_seed],
|
261 |
+
outputs=seed,
|
262 |
+
queue=False,
|
263 |
+
api_name=False,
|
264 |
+
).then(
|
265 |
fn=generate,
|
266 |
inputs=inputs,
|
267 |
+
outputs=[result, gr_metadata],
|
268 |
+
api_name=False,
|
269 |
)
|
270 |
run_button.click(
|
271 |
+
fn=utils.randomize_seed_fn,
|
272 |
+
inputs=[seed, randomize_seed],
|
273 |
+
outputs=seed,
|
274 |
+
queue=False,
|
275 |
+
api_name=False,
|
276 |
+
).then(
|
277 |
fn=generate,
|
278 |
inputs=inputs,
|
279 |
+
outputs=[result, gr_metadata],
|
280 |
+
api_name=False,
|
281 |
)
|
282 |
|
283 |
+
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB, show_error=True)
|