File size: 4,974 Bytes
aec98fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sentence_transformers import SentenceTransformer, util
import json
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
from symspellpy import SymSpell, Verbosity

device = torch.device("cpu")

class DiseaseClassifier(nn.Module):
    def __init__(self, input_size, num_classes, dropout_rate=0.35665610394511454):
        super(DiseaseClassifier, self).__init__()
        self.fc1 = nn.Linear(input_size, 382)
        self.fc2 = nn.Linear(382, 389)
        self.fc3 = nn.Linear(389, 433)
        self.fc4 = nn.Linear(433, num_classes)
        self.activation = nn.LeakyReLU()
        self.dropout = nn.Dropout(dropout_rate)

    def forward(self, x):
        x = self.activation(self.fc1(x))
        x = self.dropout(x)
        x = self.activation(self.fc2(x))
        x = self.dropout(x)
        x = self.activation(self.fc3(x))
        x = self.dropout(x)
        x = self.fc4(x)  # Logits
        return x


class DiseasePredictionModel:
    def __init__(self, ai_model_name="model.pth", data_file="data.csv", symptom_json="symptoms.json", dictionary_file="frequency_dictionary_en_82_765.txt"):
        self.df = pd.read_csv(data_file)
        self.symptom_columns = self.load_symptoms(symptom_json)
        self.label_encoder = LabelEncoder()
        self.label_encoder.fit(self.df.iloc[:, 0])
        self.scaler = StandardScaler()
        self.scaler.fit(self.df.iloc[:, 1:].values)
        self.input_size = len(self.symptom_columns)
        self.num_classes = len(self.label_encoder.classes_)
        self.model = self._load_model(ai_model_name)
        self.SYMPTOM_LIST = self.load_symptoms(symptom_json)
        self.sym_spell = SymSpell(max_dictionary_edit_distance=2, prefix_length=7)
        self.sym_spell.load_dictionary(dictionary_file, term_index=0, count_index=1)
        self.tokenizer = AutoTokenizer.from_pretrained("alvaroalon2/biobert_diseases_ner")
        self.nlp_model = AutoModelForTokenClassification.from_pretrained("alvaroalon2/biobert_diseases_ner")
        self.ner_pipeline = pipeline("ner", model=self.nlp_model, tokenizer=self.tokenizer, aggregation_strategy="simple")
        self.semantic_model = SentenceTransformer('all-MiniLM-L6-v2')

    def _load_model(self, ai_model_name):
        model = DiseaseClassifier(self.input_size, self.num_classes).to(device)
        model.load_state_dict(torch.load(ai_model_name, map_location=device, weights_only=True))
        model.eval()
        return model

    def predict_disease(self, symptoms):
        input_vector = np.zeros(len(self.symptom_columns))
        for symptom in symptoms:
            if symptom in self.symptom_columns:
                input_vector[list(self.symptom_columns).index(symptom)] = 1

        input_vector = self.scaler.transform([input_vector])

        input_tensor = torch.tensor(input_vector, dtype=torch.float32).to(device)

        with torch.no_grad():
            outputs = self.model(input_tensor)
            _, predicted_class = torch.max(outputs, 1)

        predicted_disease = self.label_encoder.inverse_transform([predicted_class.cpu().numpy()[0]])[0]
        return predicted_disease

    def load_symptoms(self, json_file):
        with open(json_file, "r", encoding="utf-8") as f:
            return json.load(f)

    def correct_text(self, text):
        words = text.split()
        corrected_words = []

        for word in words:
            if word.lower() in [symptom.lower() for symptom in self.SYMPTOM_LIST]:
                corrected_words.append(word)
            else:
                suggestions = self.sym_spell.lookup(word, Verbosity.CLOSEST, max_edit_distance=2)
                if suggestions:
                    corrected_words.append(suggestions[0].term)
                else:
                    corrected_words.append(word)
        return ' '.join(corrected_words)

    def extract_symptoms(self, text):
        ner_results = self.ner_pipeline(text)
        symptoms = set()
        for entity in ner_results:
            if entity["entity_group"] == "DISEASE":
                symptoms.add(entity["word"].lower())
        return list(symptoms)

    def match_symptoms(self, extracted_symptoms):
        matched = {}

        symptom_embeddings = self.semantic_model.encode(self.SYMPTOM_LIST, convert_to_tensor=True)

        for symptom in extracted_symptoms:
            symptom_embedding = self.semantic_model.encode(symptom, convert_to_tensor=True)

            similarities = util.pytorch_cos_sim(symptom_embedding, symptom_embeddings)[0]

            most_similar_idx = similarities.argmax()
            best_match = self.SYMPTOM_LIST[most_similar_idx]
            matched[symptom] = best_match

        return matched.values()