Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
|
4 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
|
5 |
+
from langchain.document_loaders import YoutubeLoader
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from langchain.chains import LLMChain
|
9 |
+
from langchain.prompts.chat import (
|
10 |
+
ChatPromptTemplate,
|
11 |
+
SystemMessagePromptTemplate,
|
12 |
+
HumanMessagePromptTemplate,
|
13 |
+
)
|
14 |
+
|
15 |
+
def create_db_from_video_url(video_url, api_key):
|
16 |
+
"""
|
17 |
+
Creates an Embedding of the Video and performs
|
18 |
+
"""
|
19 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
|
20 |
+
|
21 |
+
loader = YoutubeLoader.from_youtube_url(video_url)
|
22 |
+
transcripts = loader.load()
|
23 |
+
# cannot provide this directly to the model so we are splitting the transcripts into small chunks
|
24 |
+
|
25 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
26 |
+
docs = text_splitter.split_documents(transcripts)
|
27 |
+
|
28 |
+
db = FAISS.from_documents(docs, embedding=embeddings)
|
29 |
+
return db
|
30 |
+
|
31 |
+
def get_response(video, request):
|
32 |
+
"""
|
33 |
+
Usind Gemini Pro to get the response. It can handle upto 32k tokens.
|
34 |
+
"""
|
35 |
+
API_KEY = os.environ.get("API_Key")
|
36 |
+
db = create_db_from_video_url(video, API_KEY)
|
37 |
+
docs = db.similarity_search(query=request, k=5)
|
38 |
+
docs_content = " ".join([doc.page_content for doc in docs])
|
39 |
+
|
40 |
+
chat = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=API_KEY, convert_system_message_to_human=True)
|
41 |
+
|
42 |
+
# creating a template for request
|
43 |
+
template = """
|
44 |
+
You are an assistant that can answer questions about youtube videos based on
|
45 |
+
video transcripts: {docs}
|
46 |
+
Only use factual information from the transcript to answer the question.
|
47 |
+
If you don't have enough information to answer the question, say "I don't know".
|
48 |
+
Your Answers should be detailed.
|
49 |
+
"""
|
50 |
+
|
51 |
+
system_msg_prompt = SystemMessagePromptTemplate.from_template(template)
|
52 |
+
|
53 |
+
# human prompt
|
54 |
+
human_template = "Answer the following questions: {question}"
|
55 |
+
human_msg_prompt = HumanMessagePromptTemplate.from_template(human_template)
|
56 |
+
|
57 |
+
chat_prompt = ChatPromptTemplate.from_messages(
|
58 |
+
[system_msg_prompt, human_msg_prompt]
|
59 |
+
)
|
60 |
+
|
61 |
+
chain = LLMChain(llm=chat, prompt=chat_prompt)
|
62 |
+
|
63 |
+
response = chain.run(question=request, docs=docs_content)
|
64 |
+
|
65 |
+
return response
|
66 |
+
|
67 |
+
# creating title, description for the web app
|
68 |
+
title = "YouTube🔴 Video🤳 AI Assistant 🤖"
|
69 |
+
description = "Answers to the Questions asked by the user on the specified YouTube video."
|
70 |
+
|
71 |
+
|
72 |
+
# building the app
|
73 |
+
youtube_video_assistant = gr.Interface(
|
74 |
+
fn=get_response,
|
75 |
+
inputs=[gr.Text(label="Enter the Youtube Video URL:", placeholder="Example: https://www.youtube.com/watch?v=MnDudvCyWpc"),
|
76 |
+
gr.Text(label="Enter your Question", placeholder="Example: What's the video is about?")],
|
77 |
+
outputs=gr.TextArea(label="Answers using....some secret llm 🤫😉:"),
|
78 |
+
title=title,
|
79 |
+
description=description,
|
80 |
+
article=article
|
81 |
+
)
|
82 |
+
|
83 |
+
# launching the web app
|
84 |
+
youtube_video_assistant.launch()
|