itsJB commited on
Commit
499b08f
·
verified ·
1 Parent(s): 0132af7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +155 -155
app.py CHANGED
@@ -1,156 +1,156 @@
1
- import streamlit as st
2
- import yfinance as yf
3
- import plotly.graph_objs as go
4
- from plotly.subplots import make_subplots
5
- from crew import crew_creator
6
- from dotenv import load_dotenv
7
- load_dotenv()
8
-
9
- st.set_page_config(layout="wide", page_title="Finance Agent", initial_sidebar_state="expanded")
10
- st.sidebar.markdown('<p class="medium-font">Configuration</p>', unsafe_allow_html=True)
11
-
12
- st.markdown("""
13
- <div class="analysis-card">
14
- <h2 class="analysis-title">AI-Agents Finance Analyst Platform</h2>
15
- <p class="analysis-content">
16
- Welcome to my cutting-edge stock analysis platform, leveraging Artificial Intelligence and Large Language Models (LLMs) to deliver professional-grade investment insights. Our system offers:
17
- </p>
18
- <ul class="analysis-list">
19
- <li class="analysis-list-item">Comprehensive Data Analysis on stocks, and investing.</li>
20
- <li class="analysis-list-item">In-depth fundamental and technical analyses</li>
21
- <li class="analysis-list-item">Extensive web and news research integration</li>
22
- <li class="analysis-list-item">Customizable analysis parameters including time frames and specific indicators</li>
23
- </ul>
24
- <p class="analysis-content">
25
- Users can obtain a detailed, AI-generated analysis report by simply selecting a stock symbol, specifying a time period, and choosing desired analysis indicators. This platform aims to empower investors with data-driven, AI-enhanced decision-making tools for the complex world of stock market investments.
26
- </p>
27
- <p class="analysis-content">
28
- Please note, this analysis is for informational purposes only and should not be construed as financial or investment advice.
29
- </div>
30
- """, unsafe_allow_html=True)
31
-
32
- stock_symbol = st.sidebar.text_input("Enter Stock Symbol", value="NVDA", placeholder="META, AAPL, NVDA")
33
- time_period = st.sidebar.selectbox("Select Time Period", ['1mo', '3mo', '6mo', '1y', '2y', '5y', 'max'])
34
- indicators = st.sidebar.multiselect("Select Indicators", ['Moving Averages', 'Volume', 'RSI', 'MACD'])
35
- analyze_button = st.sidebar.button("📊 Analyze Stock", help="Click to start the stock analysis")
36
-
37
- # Initialize session state
38
- if 'analyzed' not in st.session_state:
39
- st.session_state.analyzed = False
40
- st.session_state.stock_info = None
41
- st.session_state.stock_data = None
42
- st.session_state.result_file_path = None
43
-
44
- def get_stock_data(stock_symbol, period='1y'):
45
- return yf.download(stock_symbol, period=period)
46
-
47
- def plot_stock_chart(stock_data, indicators):
48
- fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.05, row_heights=[0.6, 0.2, 0.2])
49
-
50
- # Main price chart
51
- fig.add_trace(go.Candlestick(x=stock_data.index,
52
- open=stock_data['Open'],
53
- high=stock_data['High'],
54
- low=stock_data['Low'],
55
- close=stock_data['Close'],
56
- name='Price'),
57
- row=1, col=1)
58
-
59
- # Add selected indicators
60
- if 'Moving Averages' in indicators:
61
- fig.add_trace(go.Scatter(x=stock_data.index, y=stock_data['Close'].rolling(window=50).mean(), name='50 MA', line=dict(color='orange')), row=1, col=1)
62
- fig.add_trace(go.Scatter(x=stock_data.index, y=stock_data['Close'].rolling(window=200).mean(), name='200 MA', line=dict(color='red')), row=1, col=1)
63
-
64
- if 'Volume' in indicators:
65
- fig.add_trace(go.Bar(x=stock_data.index, y=stock_data['Volume'], name='Volume'), row=2, col=1)
66
-
67
- if 'RSI' in indicators:
68
- delta = stock_data['Close'].diff()
69
- gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
70
- loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
71
- rs = gain / loss
72
- rsi = 100 - (100 / (1 + rs))
73
- fig.add_trace(go.Scatter(x=stock_data.index, y=rsi, name='RSI'), row=3, col=1)
74
-
75
- if 'MACD' in indicators:
76
- ema12 = stock_data['Close'].ewm(span=12, adjust=False).mean()
77
- ema26 = stock_data['Close'].ewm(span=26, adjust=False).mean()
78
- macd = ema12 - ema26
79
- signal = macd.ewm(span=9, adjust=False).mean()
80
- fig.add_trace(go.Scatter(x=stock_data.index, y=macd, name='MACD'), row=3, col=1)
81
- fig.add_trace(go.Scatter(x=stock_data.index, y=signal, name='Signal'), row=3, col=1)
82
-
83
- fig.update_layout(
84
- title='Stock Analysis',
85
- yaxis_title='Price',
86
- xaxis_rangeslider_visible=False,
87
- height=800,
88
- showlegend=True
89
- )
90
-
91
- fig.update_xaxes(
92
- rangeselector=dict(
93
- buttons=list([
94
- dict(count=1, label="1m", step="month", stepmode="backward"),
95
- dict(count=6, label="6m", step="month", stepmode="backward"),
96
- dict(count=1, label="YTD", step="year", stepmode="todate"),
97
- dict(count=1, label="1y", step="year", stepmode="backward"),
98
- dict(step="all")
99
- ])
100
- ),
101
- rangeslider=dict(visible=False),
102
- type="date"
103
- )
104
-
105
- return fig
106
-
107
- if analyze_button:
108
- st.session_state.analyzed = False # Reset analyzed state
109
- st.snow()
110
-
111
- # Fetch stock info and data
112
- with st.spinner(f"Fetching data for {stock_symbol}..."):
113
- stock = yf.Ticker(stock_symbol)
114
- st.session_state.stock_info = stock.info
115
- st.session_state.stock_data = get_stock_data(stock_symbol, period=time_period)
116
-
117
- # Create and run the crew
118
- with st.spinner("Running analysis, please wait..."):
119
-
120
- st.session_state.result_file_path = crew_creator(stock_symbol)
121
-
122
- st.session_state.analyzed = True
123
-
124
- # Display stock info if available
125
- if st.session_state.stock_info:
126
- st.markdown('<p class="medium-font">Stock Information</p>', unsafe_allow_html=True)
127
- info = st.session_state.stock_info
128
- col1, col2, col3 = st.columns(3)
129
- with col1:
130
- st.markdown(f"**Company Name:** {info.get('longName', 'N/A')}")
131
- st.markdown(f"**Sector:** {info.get('sector', 'N/A')}")
132
- with col2:
133
- st.markdown(f"**Industry:** {info.get('industry', 'N/A')}")
134
- st.markdown(f"**Country:** {info.get('country', 'N/A')}")
135
- with col3:
136
- st.markdown(f"**Current Price:** ${info.get('currentPrice', 'N/A')}")
137
- st.markdown(f"**Market Cap:** ${info.get('marketCap', 'N/A')}")
138
-
139
- # Display CrewAI result if available
140
- if st.session_state.result_file_path:
141
- st.markdown('<p class="medium-font">Analysis Result</p>', unsafe_allow_html=True)
142
-
143
- # with open(st.session_state.result_file_path, 'r') as file:
144
- # result = file.read()
145
- st.markdown("---")
146
-
147
- st.markdown(st.session_state.result_file_path)
148
-
149
- # Display chart
150
- if st.session_state.analyzed and st.session_state.stock_data is not None:
151
- st.markdown('<p class="medium-font">Interactive Stock Chart</p>', unsafe_allow_html=True)
152
- st.plotly_chart(plot_stock_chart(st.session_state.stock_data, indicators), use_container_width=True)
153
-
154
-
155
- st.markdown("---")
156
  st.markdown('<p class="small-font">Crafted by base234 </p>', unsafe_allow_html=True)
 
1
+ import streamlit as st
2
+ import yfinance as yf
3
+ import plotly.graph_objs as go
4
+ from plotly.subplots import make_subplots
5
+ from crew import crew_creator
6
+ from dotenv import load_dotenv
7
+ load_dotenv()
8
+
9
+ st.set_page_config(layout="wide", page_title="Finance Agent", initial_sidebar_state="expanded")
10
+ st.sidebar.markdown('<p class="medium-font">Configuration</p>', unsafe_allow_html=True)
11
+
12
+ st.markdown("""
13
+ <div class="analysis-card">
14
+ <h2 class="analysis-title">AI-Agents Finance Analyst Platform</h2>
15
+ <p class="analysis-content">
16
+ Welcome to my cutting-edge stock analysis platform, leveraging Artificial Intelligence and Large Language Models (LLMs) to deliver professional-grade investment insights. Our system offers:
17
+ </p>
18
+ <ul class="analysis-list">
19
+ <li class="analysis-list-item">Comprehensive Data Analysis on stocks, and investing.</li>
20
+ <li class="analysis-list-item">In-depth fundamental and technical analyses</li>
21
+ <li class="analysis-list-item">Extensive web and news research integration</li>
22
+ <li class="analysis-list-item">Customizable analysis parameters including time frames and specific indicators</li>
23
+ </ul>
24
+ <p class="analysis-content">
25
+ Users can obtain a detailed, AI-generated analysis report by simply selecting a stock symbol, specifying a time period, and choosing desired analysis indicators. This platform aims to empower investors with data-driven, AI-enhanced decision-making tools for the complex world of stock market investments.
26
+ </p>
27
+ <p class="analysis-content">
28
+ Please note, this analysis is for informational purposes only and should not be construed as financial or investment advice.
29
+ </div>
30
+ """, unsafe_allow_html=True)
31
+
32
+ stock_symbol = st.sidebar.text_input("Enter Stock Symbol", value="META", placeholder="META, AAPL, NVDA")
33
+ time_period = st.sidebar.selectbox("Select Time Period", ['1mo', '3mo', '6mo', '1y', '2y', '5y', 'max'])
34
+ indicators = st.sidebar.multiselect("Select Indicators", ['Moving Averages', 'Volume', 'RSI', 'MACD'])
35
+ analyze_button = st.sidebar.button("📊 Analyze Stock", help="Click to start the stock analysis")
36
+
37
+ # Initialize session state
38
+ if 'analyzed' not in st.session_state:
39
+ st.session_state.analyzed = False
40
+ st.session_state.stock_info = None
41
+ st.session_state.stock_data = None
42
+ st.session_state.result_file_path = None
43
+
44
+ def get_stock_data(stock_symbol, period='1y'):
45
+ return yf.download(stock_symbol, period=period)
46
+
47
+ def plot_stock_chart(stock_data, indicators):
48
+ fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.05, row_heights=[0.6, 0.2, 0.2])
49
+
50
+ # Main price chart
51
+ fig.add_trace(go.Candlestick(x=stock_data.index,
52
+ open=stock_data['Open'],
53
+ high=stock_data['High'],
54
+ low=stock_data['Low'],
55
+ close=stock_data['Close'],
56
+ name='Price'),
57
+ row=1, col=1)
58
+
59
+ # Add selected indicators
60
+ if 'Moving Averages' in indicators:
61
+ fig.add_trace(go.Scatter(x=stock_data.index, y=stock_data['Close'].rolling(window=50).mean(), name='50 MA', line=dict(color='orange')), row=1, col=1)
62
+ fig.add_trace(go.Scatter(x=stock_data.index, y=stock_data['Close'].rolling(window=200).mean(), name='200 MA', line=dict(color='red')), row=1, col=1)
63
+
64
+ if 'Volume' in indicators:
65
+ fig.add_trace(go.Bar(x=stock_data.index, y=stock_data['Volume'], name='Volume'), row=2, col=1)
66
+
67
+ if 'RSI' in indicators:
68
+ delta = stock_data['Close'].diff()
69
+ gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
70
+ loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
71
+ rs = gain / loss
72
+ rsi = 100 - (100 / (1 + rs))
73
+ fig.add_trace(go.Scatter(x=stock_data.index, y=rsi, name='RSI'), row=3, col=1)
74
+
75
+ if 'MACD' in indicators:
76
+ ema12 = stock_data['Close'].ewm(span=12, adjust=False).mean()
77
+ ema26 = stock_data['Close'].ewm(span=26, adjust=False).mean()
78
+ macd = ema12 - ema26
79
+ signal = macd.ewm(span=9, adjust=False).mean()
80
+ fig.add_trace(go.Scatter(x=stock_data.index, y=macd, name='MACD'), row=3, col=1)
81
+ fig.add_trace(go.Scatter(x=stock_data.index, y=signal, name='Signal'), row=3, col=1)
82
+
83
+ fig.update_layout(
84
+ title='Stock Analysis',
85
+ yaxis_title='Price',
86
+ xaxis_rangeslider_visible=False,
87
+ height=800,
88
+ showlegend=True
89
+ )
90
+
91
+ fig.update_xaxes(
92
+ rangeselector=dict(
93
+ buttons=list([
94
+ dict(count=1, label="1m", step="month", stepmode="backward"),
95
+ dict(count=6, label="6m", step="month", stepmode="backward"),
96
+ dict(count=1, label="YTD", step="year", stepmode="todate"),
97
+ dict(count=1, label="1y", step="year", stepmode="backward"),
98
+ dict(step="all")
99
+ ])
100
+ ),
101
+ rangeslider=dict(visible=False),
102
+ type="date"
103
+ )
104
+
105
+ return fig
106
+
107
+ if analyze_button:
108
+ st.session_state.analyzed = False # Reset analyzed state
109
+ st.snow()
110
+
111
+ # Fetch stock info and data
112
+ with st.spinner(f"Fetching data for {stock_symbol}..."):
113
+ stock = yf.Ticker(stock_symbol)
114
+ st.session_state.stock_info = stock.info
115
+ st.session_state.stock_data = get_stock_data(stock_symbol, period=time_period)
116
+
117
+ # Create and run the crew
118
+ with st.spinner("Running analysis, please wait..."):
119
+
120
+ st.session_state.result_file_path = crew_creator(stock_symbol)
121
+
122
+ st.session_state.analyzed = True
123
+
124
+ # Display stock info if available
125
+ if st.session_state.stock_info:
126
+ st.markdown('<p class="medium-font">Stock Information</p>', unsafe_allow_html=True)
127
+ info = st.session_state.stock_info
128
+ col1, col2, col3 = st.columns(3)
129
+ with col1:
130
+ st.markdown(f"**Company Name:** {info.get('longName', 'N/A')}")
131
+ st.markdown(f"**Sector:** {info.get('sector', 'N/A')}")
132
+ with col2:
133
+ st.markdown(f"**Industry:** {info.get('industry', 'N/A')}")
134
+ st.markdown(f"**Country:** {info.get('country', 'N/A')}")
135
+ with col3:
136
+ st.markdown(f"**Current Price:** ${info.get('currentPrice', 'N/A')}")
137
+ st.markdown(f"**Market Cap:** ${info.get('marketCap', 'N/A')}")
138
+
139
+ # Display CrewAI result if available
140
+ if st.session_state.result_file_path:
141
+ st.markdown('<p class="medium-font">Analysis Result</p>', unsafe_allow_html=True)
142
+
143
+ # with open(st.session_state.result_file_path, 'r') as file:
144
+ # result = file.read()
145
+ st.markdown("---")
146
+
147
+ st.markdown(st.session_state.result_file_path)
148
+
149
+ # Display chart
150
+ if st.session_state.analyzed and st.session_state.stock_data is not None:
151
+ st.markdown('<p class="medium-font">Interactive Stock Chart</p>', unsafe_allow_html=True)
152
+ st.plotly_chart(plot_stock_chart(st.session_state.stock_data, indicators), use_container_width=True)
153
+
154
+
155
+ st.markdown("---")
156
  st.markdown('<p class="small-font">Crafted by base234 </p>', unsafe_allow_html=True)