Spaces:
Runtime error
Runtime error
import os | |
# Install pruna dependency | |
os.system("pip install pruna[gpu]==0.1.2 --extra-index-url https://prunaai.pythonanywhere.com/") | |
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
import time | |
from diffusers import DiffusionPipeline, AutoencoderTiny | |
from diffusers.models.attention_processor import AttnProcessor2_0 | |
from custom_pipeline import FluxWithCFGPipeline | |
from pruna import SmashConfig | |
torch.backends.cuda.matmul.allow_tf32 = True | |
# Constants | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
DEFAULT_WIDTH = 1024 | |
DEFAULT_HEIGHT = 1024 | |
DEFAULT_INFERENCE_STEPS = 1 | |
# Device and model setup | |
dtype = torch.bfloat16 | |
print('Initializing pipeline...') | |
pipe = FluxWithCFGPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype | |
) | |
print('Loading VAE...') | |
#pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype) | |
pipe.to("cuda") | |
smash_config = SmashConfig() | |
smash_config['compilers'] = ['flux_caching'] | |
smash_config['comp_flux_caching_cache_interval'] = 2 # Higher is faster, but reduces quality | |
smash_config['comp_flux_caching_start_step'] = 2 # Best to keep it as the same as cache_interval | |
smash_config['comp_flux_caching_compile'] = True # Whether to additionally compile the model for extra speed up | |
smash_config['comp_flux_caching_save_model'] = True # Whether to save the model after compilation or just use it for inference | |
print('Pipeline and VAE loaded to CUDA.') | |
print('Loading weights from repo: Shakker-Labs/FLUX.1-dev-LoRA-add-details') | |
pipe.load_lora_weights('Shakker-Labs/FLUX.1-dev-LoRA-add-details', weight_name='FLUX-dev-lora-add_details.safetensors', adapter_name='detail') | |
print('Loading weights from repo: its-magick/merlin-test-loras') | |
pipe.load_lora_weights('its-magick/merlin-test-loras', weight_name='Canopus-LoRA-Flux-UltraRealism.safetensors', adapter_name='ultrarealism') | |
print('Loading weights from repo: its-magick/merlin-test-loras') | |
pipe.load_lora_weights('its-magick/merlin-test-loras', weight_name='Canopus-LoRA-Flux-FaceRealism.safetensors', adapter_name='faces') | |
print('Loading weights from repo: miike-ai/merlin-ironman') | |
pipe.load_lora_weights('miike-ai/merlin-ironman', weight_name='lora.safetensors', adapter_name='ironman') | |
print('Loading weights from repo: its-magick/merlin-food') | |
pipe.load_lora_weights('its-magick/merlin-food', weight_name='lora.safetensors', adapter_name='food') | |
print('Loading weights from repo: its-magick/merlin-logos') | |
pipe.load_lora_weights('its-magick/merlin-logos', weight_name='merlin-logos.safetensors', adapter_name='logos') | |
print('Loading weights from repo: its-magick/merlin-mobile-app') | |
pipe.load_lora_weights('its-magick/merlin-mobile-app', weight_name='lora.safetensors', adapter_name='mobile') | |
pipe.load_lora_weights('its-magick/merlin-infographic', weight_name='lora.safetensors', adapter_name='infographic') | |
print('Loading weights from repo: its-magick/merlin-anti-blur') | |
pipe.load_lora_weights('its-magick/merlin-anti-blur', weight_name='merlin-anti-blur.safetensors', adapter_name='deblur') | |
print('Loading weights from repo: its-magick/merlin-office') | |
pipe.load_lora_weights('its-magick/merlin-office', weight_name='lora.safetensors', adapter_name='office') | |
print('Loading weights from repo: its-magick/merlin-channel-letters') | |
pipe.load_lora_weights('its-magick/merlin-channel-letters', weight_name='lora.safetensors', adapter_name='channel-letters') | |
print('Loading weights from repo: its-magick/merlin-headshots') | |
pipe.load_lora_weights('its-magick/merlin-headshots', weight_name='lora.safetensors', adapter_name='headshots') | |
print('Loading weights from repo: its-magick/merlin-panoramic') | |
pipe.load_lora_weights('its-magick/merlin-panoramic', weight_name='lora.safetensors', adapter_name='panoramic') | |
pipe.load_lora_weights('its-magick/perfection style v1.safetensors', weight_name='perfection style v1.safetensors', adapter_name='perfection') | |
print('All safetensor files have loaded successfully.') | |
print('Setting adapters...') | |
pipe.set_adapters(["detail"], adapter_weights=[0.6]) | |
pipe.set_adapters(["faces"], adapter_weights=[0.6]) | |
pipe.set_adapters(["ultrarealism"], adapter_weights=[0.6]) | |
pipe.set_adapters(["ironman"], adapter_weights=[0.6]) | |
pipe.set_adapters(["food"], adapter_weights=[0.6]) | |
pipe.set_adapters(["logos"], adapter_weights=[0.6]) | |
pipe.set_adapters(["mobile"], adapter_weights=[0.6]) | |
pipe.set_adapters(["infographic"], adapter_weights=[0.6]) | |
pipe.set_adapters(["deblur"], adapter_weights=[0.6]) | |
pipe.set_adapters(["office"], adapter_weights=[0.6]) | |
pipe.set_adapters(["channel-letters"], adapter_weights=[0.6]) | |
pipe.set_adapters(["headshots"], adapter_weights=[0.6]) | |
pipe.set_adapters(["panoramic"], adapter_weights=[0.6]) | |
pipe.set_adapters(["perfection"], adapter_weights=[0.8]) | |
print('Adapters have been set.') | |
print('Fusing LoRAs...') | |
pipe.fuse_lora(adapter_name=["faces"], lora_scale=0.6) | |
pipe.fuse_lora(adapter_name=["detail"], lora_scale=0.6) | |
pipe.fuse_lora(adapter_name=["ultrarealism"], lora_scale=0.6) | |
pipe.fuse_lora(adapter_name=["ironman"], lora_scale=0.4) | |
pipe.fuse_lora(adapter_name=["food"], lora_scale=0.4) | |
pipe.fuse_lora(adapter_name=["logos"], lora_scale=0.4) | |
pipe.fuse_lora(adapter_name=["infographic"], lora_scale=0.6) | |
pipe.fuse_lora(adapter_name=["deblur"], lora_scale=0.6) | |
pipe.fuse_lora(adapter_name=["office"], lora_scale=0.6) | |
pipe.fuse_lora(adapter_name=["channel-letters"], lora_scale=0.6) | |
pipe.fuse_lora(adapter_name=["headshots"], lora_scale=0.6) | |
pipe.fuse_lora(adapter_name=["panoramic"], lora_scale=0.6) | |
print('LoRAs have been fused.') | |
# Inference function | |
def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(int(float(seed))) | |
start_time = time.time() | |
print(f'Starting image generation with prompt: "{prompt}", seed: {seed}, width: {width}, height: {height}, steps: {num_inference_steps}') | |
# Only generate the last image in the sequence | |
img = pipe.generate_images( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator | |
) | |
latency = f"Latency: {(time.time()-start_time):.2f} seconds" | |
print(f'Image generation completed. {latency}') | |
return img, seed, latency | |
# Example prompts | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cute white cat holding a sign that says hello world", | |
"an anime illustration of Steve Jobs", | |
"Create image of Modern house in minecraft style", | |
"photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair", | |
"Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.", | |
"Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.", | |
] | |
# --- Gradio UI --- | |
with gr.Blocks() as demo: | |
with gr.Column(elem_id="app-container"): | |
gr.Markdown("#pixe") | |
gr.Markdown("Generate stunning images in real-time.") | |
# gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>") | |
with gr.Row(): | |
with gr.Column(scale=2.5): | |
result = gr.Image(label="Generated Image", show_label=False, interactive=False) | |
with gr.Column(scale=1): | |
prompt = gr.Text( | |
label="Prompt", | |
placeholder="Describe the image you want to generate...", | |
lines=3, | |
show_label=False, | |
container=False, | |
) | |
generateBtn = gr.Button("πΌοΈ Generate Image") | |
# enhanceBtn = gr.Button("π Enhance Image") | |
with gr.Column("Advanced Options"): | |
with gr.Row(): | |
realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False) | |
latency = gr.Text(label="Latency") | |
with gr.Row(): | |
seed = gr.Number(label="Seed", value=42) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT) | |
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS) | |
# with gr.Row(): | |
# gr.Markdown("### π Inspiration Gallery") | |
# with gr.Row(): | |
# gr.Examples( | |
# examples=examples, | |
# fn=generate_image, | |
# inputs=[prompt], | |
# outputs=[result, seed, latency], | |
# cache_examples="lazy" | |
# ) | |
# enhanceBtn.click( | |
# fn=generate_image, | |
# inputs=[prompt, seed, width, height], | |
# outputs=[result, seed, latency], | |
# show_progress="full", | |
# queue=False, | |
# concurrency_limit=None | |
# ) | |
generateBtn.click( | |
fn=generate_image, | |
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], | |
outputs=[result, seed, latency], | |
show_progress="full", | |
api_name="RealtimeFlux", | |
queue=False | |
) | |
def update_ui(realtime_enabled): | |
return { | |
prompt: gr.update(interactive=True), | |
generateBtn: gr.update(visible=not realtime_enabled) | |
} | |
realtime.change( | |
fn=update_ui, | |
inputs=[realtime], | |
outputs=[prompt, generateBtn], | |
queue=False, | |
concurrency_limit=None | |
) | |
def realtime_generation(*args): | |
if args[0]: # If realtime is enabled | |
return next(generate_image(*args[1:])) | |
prompt.submit( | |
fn=generate_image, | |
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], | |
outputs=[result, seed, latency], | |
show_progress="full", | |
queue=False, | |
concurrency_limit=None | |
) | |
for component in [prompt, width, height, num_inference_steps]: | |
component.input( | |
fn=realtime_generation, | |
inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps], | |
outputs=[result, seed, latency], | |
show_progress="hidden", | |
trigger_mode="always_last", | |
queue=False, | |
concurrency_limit=None | |
) | |
# Launch the app | |
print('Launching the app...') | |
demo.launch(share=True) | |
print('App launched successfully.') |