|
import time, logging |
|
import os |
|
import random, traceback |
|
import numpy as np |
|
import torch |
|
import torch.utils.data |
|
from tqdm import tqdm |
|
|
|
from module import commons |
|
from module.mel_processing import spectrogram_torch |
|
from text import cleaned_text_to_sequence |
|
from utils import load_wav_to_torch, load_filepaths_and_text |
|
import torch.nn.functional as F |
|
from functools import lru_cache |
|
import torch |
|
import requests |
|
from scipy.io import wavfile |
|
from io import BytesIO |
|
|
|
|
|
from my_utils import load_audio |
|
|
|
|
|
class TextAudioSpeakerLoader(torch.utils.data.Dataset): |
|
""" |
|
1) loads audio, speaker_id, text pairs |
|
2) normalizes text and converts them to sequences of integers |
|
3) computes spectrograms from audio files. |
|
""" |
|
|
|
def __init__(self, hparams, val=False): |
|
exp_dir = hparams.exp_dir |
|
self.path2 = "%s/2-name2text.txt" % exp_dir |
|
self.path4 = "%s/4-cnhubert" % exp_dir |
|
self.path5 = "%s/5-wav32k" % exp_dir |
|
assert os.path.exists(self.path2) |
|
assert os.path.exists(self.path4) |
|
assert os.path.exists(self.path5) |
|
names4 = set([name[:-3] for name in list(os.listdir(self.path4))]) |
|
names5 = set(os.listdir(self.path5)) |
|
self.phoneme_data = {} |
|
with open(self.path2, "r", encoding="utf8") as f: |
|
lines = f.read().strip("\n").split("\n") |
|
|
|
for line in lines: |
|
tmp = line.split("\t") |
|
if len(tmp) != 4: |
|
continue |
|
self.phoneme_data[tmp[0]] = [tmp[1]] |
|
|
|
self.audiopaths_sid_text = list(set(self.phoneme_data) & names4 & names5) |
|
tmp = self.audiopaths_sid_text |
|
leng = len(tmp) |
|
min_num = 100 |
|
if leng < min_num: |
|
self.audiopaths_sid_text = [] |
|
for _ in range(max(2, int(min_num / leng))): |
|
self.audiopaths_sid_text += tmp |
|
self.max_wav_value = hparams.max_wav_value |
|
self.sampling_rate = hparams.sampling_rate |
|
self.filter_length = hparams.filter_length |
|
self.hop_length = hparams.hop_length |
|
self.win_length = hparams.win_length |
|
self.sampling_rate = hparams.sampling_rate |
|
self.val = val |
|
|
|
random.seed(1234) |
|
random.shuffle(self.audiopaths_sid_text) |
|
|
|
print("phoneme_data_len:", len(self.phoneme_data.keys())) |
|
print("wav_data_len:", len(self.audiopaths_sid_text)) |
|
|
|
audiopaths_sid_text_new = [] |
|
lengths = [] |
|
skipped_phone = 0 |
|
skipped_dur = 0 |
|
for audiopath in tqdm(self.audiopaths_sid_text): |
|
try: |
|
phoneme = self.phoneme_data[audiopath][0] |
|
phoneme = phoneme.split(" ") |
|
phoneme_ids = cleaned_text_to_sequence(phoneme) |
|
except Exception: |
|
print(f"{audiopath} not in self.phoneme_data !") |
|
skipped_phone += 1 |
|
continue |
|
size = os.path.getsize("%s/%s" % (self.path5, audiopath)) |
|
duration = size / self.sampling_rate / 2 |
|
if 54 > duration > 0.6 or self.val: |
|
audiopaths_sid_text_new.append([audiopath, phoneme_ids]) |
|
lengths.append(size // (2 * self.hop_length)) |
|
else: |
|
skipped_dur += 1 |
|
continue |
|
print("skipped_phone: ", skipped_phone, ", skipped_dur: ", skipped_dur) |
|
print("total left: ", len(audiopaths_sid_text_new)) |
|
assert len(audiopaths_sid_text_new) > 1 |
|
self.audiopaths_sid_text = audiopaths_sid_text_new |
|
self.lengths = lengths |
|
|
|
def get_audio_text_speaker_pair(self, audiopath_sid_text): |
|
audiopath, phoneme_ids = audiopath_sid_text |
|
text = torch.FloatTensor(phoneme_ids) |
|
try: |
|
spec, wav = self.get_audio("%s/%s" % (self.path5, audiopath)) |
|
with torch.no_grad(): |
|
ssl = torch.load( |
|
"%s/%s.pt" % (self.path4, audiopath), map_location="cpu" |
|
) |
|
if ssl.shape[-1] != spec.shape[-1]: |
|
typee = ssl.dtype |
|
ssl = F.pad(ssl.float(), (0, 1), mode="replicate").to(typee) |
|
ssl.requires_grad = False |
|
except: |
|
traceback.print_exc() |
|
spec = torch.zeros(1025, 100) |
|
wav = torch.zeros(1, 100 * self.hop_length) |
|
ssl = torch.zeros(1, 768, 100) |
|
text = text[-1:] |
|
print("load audio or ssl error!!!!!!", audiopath) |
|
|
|
return (ssl, spec, wav, text) |
|
|
|
def get_audio(self, filename): |
|
audio_array = load_audio( |
|
filename, self.sampling_rate |
|
) |
|
|
|
audio = torch.FloatTensor(audio_array) |
|
audio_norm = audio |
|
audio_norm = audio_norm.unsqueeze(0) |
|
spec = spectrogram_torch( |
|
audio_norm, |
|
self.filter_length, |
|
self.sampling_rate, |
|
self.hop_length, |
|
self.win_length, |
|
center=False, |
|
) |
|
spec = torch.squeeze(spec, 0) |
|
return spec, audio_norm |
|
|
|
def get_sid(self, sid): |
|
sid = torch.LongTensor([int(sid)]) |
|
return sid |
|
|
|
def __getitem__(self, index): |
|
|
|
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index]) |
|
|
|
def __len__(self): |
|
return len(self.audiopaths_sid_text) |
|
|
|
def random_slice(self, ssl, wav, mel): |
|
assert abs(ssl.shape[-1] - wav.shape[-1] // self.hop_length) < 3, ( |
|
"first", |
|
ssl.shape, |
|
wav.shape, |
|
) |
|
|
|
len_mel = mel.shape[1] |
|
if self.val: |
|
reference_mel = mel[:, : len_mel // 3] |
|
return reference_mel, ssl, wav, mel |
|
dir = random.randint(0, 1) |
|
sep_point = random.randint(int(len_mel // 3), int(len_mel // 3 * 2)) |
|
|
|
if dir == 0: |
|
reference_mel = mel[:, :sep_point] |
|
ssl = ssl[:, :, sep_point:] |
|
wav2 = wav[:, sep_point * self.hop_length :] |
|
mel = mel[:, sep_point:] |
|
else: |
|
reference_mel = mel[:, sep_point:] |
|
ssl = ssl[:, :, :sep_point] |
|
wav2 = wav[:, : sep_point * self.hop_length] |
|
mel = mel[:, :sep_point] |
|
|
|
assert abs(ssl.shape[-1] - wav2.shape[-1] // self.hop_length) < 3, ( |
|
ssl.shape, |
|
wav.shape, |
|
wav2.shape, |
|
mel.shape, |
|
sep_point, |
|
self.hop_length, |
|
sep_point * self.hop_length, |
|
dir, |
|
) |
|
return reference_mel, ssl, wav2, mel |
|
|
|
|
|
class TextAudioSpeakerCollate: |
|
"""Zero-pads model inputs and targets""" |
|
|
|
def __init__(self, return_ids=False): |
|
self.return_ids = return_ids |
|
|
|
def __call__(self, batch): |
|
"""Collate's training batch from normalized text, audio and speaker identities |
|
PARAMS |
|
------ |
|
batch: [text_normalized, spec_normalized, wav_normalized, sid] |
|
""" |
|
|
|
_, ids_sorted_decreasing = torch.sort( |
|
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True |
|
) |
|
|
|
max_ssl_len = max([x[0].size(2) for x in batch]) |
|
max_ssl_len = int(2 * ((max_ssl_len // 2) + 1)) |
|
max_spec_len = max([x[1].size(1) for x in batch]) |
|
max_spec_len = int(2 * ((max_spec_len // 2) + 1)) |
|
max_wav_len = max([x[2].size(1) for x in batch]) |
|
max_text_len = max([x[3].size(0) for x in batch]) |
|
|
|
ssl_lengths = torch.LongTensor(len(batch)) |
|
spec_lengths = torch.LongTensor(len(batch)) |
|
wav_lengths = torch.LongTensor(len(batch)) |
|
text_lengths = torch.LongTensor(len(batch)) |
|
|
|
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len) |
|
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) |
|
ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len) |
|
text_padded = torch.LongTensor(len(batch), max_text_len) |
|
|
|
spec_padded.zero_() |
|
wav_padded.zero_() |
|
ssl_padded.zero_() |
|
text_padded.zero_() |
|
|
|
for i in range(len(ids_sorted_decreasing)): |
|
row = batch[ids_sorted_decreasing[i]] |
|
|
|
ssl = row[0] |
|
ssl_padded[i, :, : ssl.size(2)] = ssl[0, :, :] |
|
ssl_lengths[i] = ssl.size(2) |
|
|
|
spec = row[1] |
|
spec_padded[i, :, : spec.size(1)] = spec |
|
spec_lengths[i] = spec.size(1) |
|
|
|
wav = row[2] |
|
wav_padded[i, :, : wav.size(1)] = wav |
|
wav_lengths[i] = wav.size(1) |
|
|
|
text = row[3] |
|
text_padded[i, : text.size(0)] = text |
|
text_lengths[i] = text.size(0) |
|
|
|
return ( |
|
ssl_padded, |
|
ssl_lengths, |
|
spec_padded, |
|
spec_lengths, |
|
wav_padded, |
|
wav_lengths, |
|
text_padded, |
|
text_lengths, |
|
) |
|
|
|
|
|
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): |
|
""" |
|
Maintain similar input lengths in a batch. |
|
Length groups are specified by boundaries. |
|
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}. |
|
|
|
It removes samples which are not included in the boundaries. |
|
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dataset, |
|
batch_size, |
|
boundaries, |
|
num_replicas=None, |
|
rank=None, |
|
shuffle=True, |
|
): |
|
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) |
|
self.lengths = dataset.lengths |
|
|
|
self.batch_size = batch_size |
|
self.boundaries = boundaries |
|
|
|
self.buckets, self.num_samples_per_bucket = self._create_buckets() |
|
self.total_size = sum(self.num_samples_per_bucket) |
|
self.num_samples = self.total_size // self.num_replicas |
|
|
|
def _create_buckets(self): |
|
buckets = [[] for _ in range(len(self.boundaries) - 1)] |
|
for i in range(len(self.lengths)): |
|
length = self.lengths[i] |
|
idx_bucket = self._bisect(length) |
|
if idx_bucket != -1: |
|
buckets[idx_bucket].append(i) |
|
|
|
for i in range(len(buckets) - 1, 0, -1): |
|
|
|
if len(buckets[i]) == 0: |
|
buckets.pop(i) |
|
self.boundaries.pop(i + 1) |
|
|
|
num_samples_per_bucket = [] |
|
for i in range(len(buckets)): |
|
len_bucket = len(buckets[i]) |
|
total_batch_size = self.num_replicas * self.batch_size |
|
rem = ( |
|
total_batch_size - (len_bucket % total_batch_size) |
|
) % total_batch_size |
|
num_samples_per_bucket.append(len_bucket + rem) |
|
return buckets, num_samples_per_bucket |
|
|
|
def __iter__(self): |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.epoch) |
|
|
|
indices = [] |
|
if self.shuffle: |
|
for bucket in self.buckets: |
|
indices.append(torch.randperm(len(bucket), generator=g).tolist()) |
|
else: |
|
for bucket in self.buckets: |
|
indices.append(list(range(len(bucket)))) |
|
|
|
batches = [] |
|
for i in range(len(self.buckets)): |
|
bucket = self.buckets[i] |
|
len_bucket = len(bucket) |
|
ids_bucket = indices[i] |
|
num_samples_bucket = self.num_samples_per_bucket[i] |
|
|
|
|
|
rem = num_samples_bucket - len_bucket |
|
ids_bucket = ( |
|
ids_bucket |
|
+ ids_bucket * (rem // len_bucket) |
|
+ ids_bucket[: (rem % len_bucket)] |
|
) |
|
|
|
|
|
ids_bucket = ids_bucket[self.rank :: self.num_replicas] |
|
|
|
|
|
for j in range(len(ids_bucket) // self.batch_size): |
|
batch = [ |
|
bucket[idx] |
|
for idx in ids_bucket[ |
|
j * self.batch_size : (j + 1) * self.batch_size |
|
] |
|
] |
|
batches.append(batch) |
|
|
|
if self.shuffle: |
|
batch_ids = torch.randperm(len(batches), generator=g).tolist() |
|
batches = [batches[i] for i in batch_ids] |
|
self.batches = batches |
|
|
|
assert len(self.batches) * self.batch_size == self.num_samples |
|
return iter(self.batches) |
|
|
|
def _bisect(self, x, lo=0, hi=None): |
|
if hi is None: |
|
hi = len(self.boundaries) - 1 |
|
|
|
if hi > lo: |
|
mid = (hi + lo) // 2 |
|
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: |
|
return mid |
|
elif x <= self.boundaries[mid]: |
|
return self._bisect(x, lo, mid) |
|
else: |
|
return self._bisect(x, mid + 1, hi) |
|
else: |
|
return -1 |
|
|
|
def __len__(self): |
|
return self.num_samples // self.batch_size |
|
|