v
File size: 29,091 Bytes
26be912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
import math
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F

from torch.nn import Conv1d
from torch.nn.utils import weight_norm, remove_weight_norm

from module import commons
from module.commons import init_weights, get_padding
from module.transforms import piecewise_rational_quadratic_transform
import torch.distributions as D


LRELU_SLOPE = 0.1


class LayerNorm(nn.Module):
    def __init__(self, channels, eps=1e-5):
        super().__init__()
        self.channels = channels
        self.eps = eps

        self.gamma = nn.Parameter(torch.ones(channels))
        self.beta = nn.Parameter(torch.zeros(channels))

    def forward(self, x):
        x = x.transpose(1, -1)
        x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
        return x.transpose(1, -1)


class ConvReluNorm(nn.Module):
    def __init__(
        self,
        in_channels,
        hidden_channels,
        out_channels,
        kernel_size,
        n_layers,
        p_dropout,
    ):
        super().__init__()
        self.in_channels = in_channels
        self.hidden_channels = hidden_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.n_layers = n_layers
        self.p_dropout = p_dropout
        assert n_layers > 1, "Number of layers should be larger than 0."

        self.conv_layers = nn.ModuleList()
        self.norm_layers = nn.ModuleList()
        self.conv_layers.append(
            nn.Conv1d(
                in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
            )
        )
        self.norm_layers.append(LayerNorm(hidden_channels))
        self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
        for _ in range(n_layers - 1):
            self.conv_layers.append(
                nn.Conv1d(
                    hidden_channels,
                    hidden_channels,
                    kernel_size,
                    padding=kernel_size // 2,
                )
            )
            self.norm_layers.append(LayerNorm(hidden_channels))
        self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
        self.proj.weight.data.zero_()
        self.proj.bias.data.zero_()

    def forward(self, x, x_mask):
        x_org = x
        for i in range(self.n_layers):
            x = self.conv_layers[i](x * x_mask)
            x = self.norm_layers[i](x)
            x = self.relu_drop(x)
        x = x_org + self.proj(x)
        return x * x_mask


class DDSConv(nn.Module):
    """
    Dialted and Depth-Separable Convolution
    """

    def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
        super().__init__()
        self.channels = channels
        self.kernel_size = kernel_size
        self.n_layers = n_layers
        self.p_dropout = p_dropout

        self.drop = nn.Dropout(p_dropout)
        self.convs_sep = nn.ModuleList()
        self.convs_1x1 = nn.ModuleList()
        self.norms_1 = nn.ModuleList()
        self.norms_2 = nn.ModuleList()
        for i in range(n_layers):
            dilation = kernel_size**i
            padding = (kernel_size * dilation - dilation) // 2
            self.convs_sep.append(
                nn.Conv1d(
                    channels,
                    channels,
                    kernel_size,
                    groups=channels,
                    dilation=dilation,
                    padding=padding,
                )
            )
            self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
            self.norms_1.append(LayerNorm(channels))
            self.norms_2.append(LayerNorm(channels))

    def forward(self, x, x_mask, g=None):
        if g is not None:
            x = x + g
        for i in range(self.n_layers):
            y = self.convs_sep[i](x * x_mask)
            y = self.norms_1[i](y)
            y = F.gelu(y)
            y = self.convs_1x1[i](y)
            y = self.norms_2[i](y)
            y = F.gelu(y)
            y = self.drop(y)
            x = x + y
        return x * x_mask


class WN(torch.nn.Module):
    def __init__(
        self,
        hidden_channels,
        kernel_size,
        dilation_rate,
        n_layers,
        gin_channels=0,
        p_dropout=0,
    ):
        super(WN, self).__init__()
        assert kernel_size % 2 == 1
        self.hidden_channels = hidden_channels
        self.kernel_size = (kernel_size,)
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.gin_channels = gin_channels
        self.p_dropout = p_dropout

        self.in_layers = torch.nn.ModuleList()
        self.res_skip_layers = torch.nn.ModuleList()
        self.drop = nn.Dropout(p_dropout)

        if gin_channels != 0:
            cond_layer = torch.nn.Conv1d(
                gin_channels, 2 * hidden_channels * n_layers, 1
            )
            self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")

        for i in range(n_layers):
            dilation = dilation_rate**i
            padding = int((kernel_size * dilation - dilation) / 2)
            in_layer = torch.nn.Conv1d(
                hidden_channels,
                2 * hidden_channels,
                kernel_size,
                dilation=dilation,
                padding=padding,
            )
            in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
            self.in_layers.append(in_layer)

            # last one is not necessary
            if i < n_layers - 1:
                res_skip_channels = 2 * hidden_channels
            else:
                res_skip_channels = hidden_channels

            res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
            res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
            self.res_skip_layers.append(res_skip_layer)

    def forward(self, x, x_mask, g=None, **kwargs):
        output = torch.zeros_like(x)
        n_channels_tensor = torch.IntTensor([self.hidden_channels])

        if g is not None:
            g = self.cond_layer(g)

        for i in range(self.n_layers):
            x_in = self.in_layers[i](x)
            if g is not None:
                cond_offset = i * 2 * self.hidden_channels
                g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
            else:
                g_l = torch.zeros_like(x_in)

            acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
            acts = self.drop(acts)

            res_skip_acts = self.res_skip_layers[i](acts)
            if i < self.n_layers - 1:
                res_acts = res_skip_acts[:, : self.hidden_channels, :]
                x = (x + res_acts) * x_mask
                output = output + res_skip_acts[:, self.hidden_channels :, :]
            else:
                output = output + res_skip_acts
        return output * x_mask

    def remove_weight_norm(self):
        if self.gin_channels != 0:
            torch.nn.utils.remove_weight_norm(self.cond_layer)
        for l in self.in_layers:
            torch.nn.utils.remove_weight_norm(l)
        for l in self.res_skip_layers:
            torch.nn.utils.remove_weight_norm(l)


class ResBlock1(torch.nn.Module):
    def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
        super(ResBlock1, self).__init__()
        self.convs1 = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[0],
                        padding=get_padding(kernel_size, dilation[0]),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[1],
                        padding=get_padding(kernel_size, dilation[1]),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[2],
                        padding=get_padding(kernel_size, dilation[2]),
                    )
                ),
            ]
        )
        self.convs1.apply(init_weights)

        self.convs2 = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                ),
            ]
        )
        self.convs2.apply(init_weights)

    def forward(self, x, x_mask=None):
        for c1, c2 in zip(self.convs1, self.convs2):
            xt = F.leaky_relu(x, LRELU_SLOPE)
            if x_mask is not None:
                xt = xt * x_mask
            xt = c1(xt)
            xt = F.leaky_relu(xt, LRELU_SLOPE)
            if x_mask is not None:
                xt = xt * x_mask
            xt = c2(xt)
            x = xt + x
        if x_mask is not None:
            x = x * x_mask
        return x

    def remove_weight_norm(self):
        for l in self.convs1:
            remove_weight_norm(l)
        for l in self.convs2:
            remove_weight_norm(l)


class ResBlock2(torch.nn.Module):
    def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
        super(ResBlock2, self).__init__()
        self.convs = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[0],
                        padding=get_padding(kernel_size, dilation[0]),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[1],
                        padding=get_padding(kernel_size, dilation[1]),
                    )
                ),
            ]
        )
        self.convs.apply(init_weights)

    def forward(self, x, x_mask=None):
        for c in self.convs:
            xt = F.leaky_relu(x, LRELU_SLOPE)
            if x_mask is not None:
                xt = xt * x_mask
            xt = c(xt)
            x = xt + x
        if x_mask is not None:
            x = x * x_mask
        return x

    def remove_weight_norm(self):
        for l in self.convs:
            remove_weight_norm(l)


class Log(nn.Module):
    def forward(self, x, x_mask, reverse=False, **kwargs):
        if not reverse:
            y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
            logdet = torch.sum(-y, [1, 2])
            return y, logdet
        else:
            x = torch.exp(x) * x_mask
            return x


class Flip(nn.Module):
    def forward(self, x, *args, reverse=False, **kwargs):
        x = torch.flip(x, [1])
        if not reverse:
            logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
            return x, logdet
        else:
            return x


class ElementwiseAffine(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.channels = channels
        self.m = nn.Parameter(torch.zeros(channels, 1))
        self.logs = nn.Parameter(torch.zeros(channels, 1))

    def forward(self, x, x_mask, reverse=False, **kwargs):
        if not reverse:
            y = self.m + torch.exp(self.logs) * x
            y = y * x_mask
            logdet = torch.sum(self.logs * x_mask, [1, 2])
            return y, logdet
        else:
            x = (x - self.m) * torch.exp(-self.logs) * x_mask
            return x


class ResidualCouplingLayer(nn.Module):
    def __init__(
        self,
        channels,
        hidden_channels,
        kernel_size,
        dilation_rate,
        n_layers,
        p_dropout=0,
        gin_channels=0,
        mean_only=False,
    ):
        assert channels % 2 == 0, "channels should be divisible by 2"
        super().__init__()
        self.channels = channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.half_channels = channels // 2
        self.mean_only = mean_only

        self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
        self.enc = WN(
            hidden_channels,
            kernel_size,
            dilation_rate,
            n_layers,
            p_dropout=p_dropout,
            gin_channels=gin_channels,
        )
        self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
        self.post.weight.data.zero_()
        self.post.bias.data.zero_()

    def forward(self, x, x_mask, g=None, reverse=False):
        x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
        h = self.pre(x0) * x_mask
        h = self.enc(h, x_mask, g=g)
        stats = self.post(h) * x_mask
        if not self.mean_only:
            m, logs = torch.split(stats, [self.half_channels] * 2, 1)
        else:
            m = stats
            logs = torch.zeros_like(m)

        if not reverse:
            x1 = m + x1 * torch.exp(logs) * x_mask
            x = torch.cat([x0, x1], 1)
            logdet = torch.sum(logs, [1, 2])
            return x, logdet
        else:
            x1 = (x1 - m) * torch.exp(-logs) * x_mask
            x = torch.cat([x0, x1], 1)
            return x


class ConvFlow(nn.Module):
    def __init__(
        self,
        in_channels,
        filter_channels,
        kernel_size,
        n_layers,
        num_bins=10,
        tail_bound=5.0,
    ):
        super().__init__()
        self.in_channels = in_channels
        self.filter_channels = filter_channels
        self.kernel_size = kernel_size
        self.n_layers = n_layers
        self.num_bins = num_bins
        self.tail_bound = tail_bound
        self.half_channels = in_channels // 2

        self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
        self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
        self.proj = nn.Conv1d(
            filter_channels, self.half_channels * (num_bins * 3 - 1), 1
        )
        self.proj.weight.data.zero_()
        self.proj.bias.data.zero_()

    def forward(self, x, x_mask, g=None, reverse=False):
        x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
        h = self.pre(x0)
        h = self.convs(h, x_mask, g=g)
        h = self.proj(h) * x_mask

        b, c, t = x0.shape
        h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2)  # [b, cx?, t] -> [b, c, t, ?]

        unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
        unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
            self.filter_channels
        )
        unnormalized_derivatives = h[..., 2 * self.num_bins :]

        x1, logabsdet = piecewise_rational_quadratic_transform(
            x1,
            unnormalized_widths,
            unnormalized_heights,
            unnormalized_derivatives,
            inverse=reverse,
            tails="linear",
            tail_bound=self.tail_bound,
        )

        x = torch.cat([x0, x1], 1) * x_mask
        logdet = torch.sum(logabsdet * x_mask, [1, 2])
        if not reverse:
            return x, logdet
        else:
            return x


class LinearNorm(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        bias=True,
        spectral_norm=False,
    ):
        super(LinearNorm, self).__init__()
        self.fc = nn.Linear(in_channels, out_channels, bias)

        if spectral_norm:
            self.fc = nn.utils.spectral_norm(self.fc)

    def forward(self, input):
        out = self.fc(input)
        return out


class Mish(nn.Module):
    def __init__(self):
        super(Mish, self).__init__()

    def forward(self, x):
        return x * torch.tanh(F.softplus(x))


class Conv1dGLU(nn.Module):
    """
    Conv1d + GLU(Gated Linear Unit) with residual connection.
    For GLU refer to https://arxiv.org/abs/1612.08083 paper.
    """

    def __init__(self, in_channels, out_channels, kernel_size, dropout):
        super(Conv1dGLU, self).__init__()
        self.out_channels = out_channels
        self.conv1 = ConvNorm(in_channels, 2 * out_channels, kernel_size=kernel_size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        residual = x
        x = self.conv1(x)
        x1, x2 = torch.split(x, split_size_or_sections=self.out_channels, dim=1)
        x = x1 * torch.sigmoid(x2)
        x = residual + self.dropout(x)
        return x


class ConvNorm(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size=1,
        stride=1,
        padding=None,
        dilation=1,
        bias=True,
        spectral_norm=False,
    ):
        super(ConvNorm, self).__init__()

        if padding is None:
            assert kernel_size % 2 == 1
            padding = int(dilation * (kernel_size - 1) / 2)

        self.conv = torch.nn.Conv1d(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            bias=bias,
        )

        if spectral_norm:
            self.conv = nn.utils.spectral_norm(self.conv)

    def forward(self, input):
        out = self.conv(input)
        return out


class MultiHeadAttention(nn.Module):
    """Multi-Head Attention module"""

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.0, spectral_norm=False):
        super().__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model, n_head * d_k)
        self.w_ks = nn.Linear(d_model, n_head * d_k)
        self.w_vs = nn.Linear(d_model, n_head * d_v)

        self.attention = ScaledDotProductAttention(
            temperature=np.power(d_model, 0.5), dropout=dropout
        )

        self.fc = nn.Linear(n_head * d_v, d_model)
        self.dropout = nn.Dropout(dropout)

        if spectral_norm:
            self.w_qs = nn.utils.spectral_norm(self.w_qs)
            self.w_ks = nn.utils.spectral_norm(self.w_ks)
            self.w_vs = nn.utils.spectral_norm(self.w_vs)
            self.fc = nn.utils.spectral_norm(self.fc)

    def forward(self, x, mask=None):
        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        sz_b, len_x, _ = x.size()

        residual = x

        q = self.w_qs(x).view(sz_b, len_x, n_head, d_k)
        k = self.w_ks(x).view(sz_b, len_x, n_head, d_k)
        v = self.w_vs(x).view(sz_b, len_x, n_head, d_v)
        q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_k)  # (n*b) x lq x dk
        k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_k)  # (n*b) x lk x dk
        v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_v)  # (n*b) x lv x dv

        if mask is not None:
            slf_mask = mask.repeat(n_head, 1, 1)  # (n*b) x .. x ..
        else:
            slf_mask = None
        output, attn = self.attention(q, k, v, mask=slf_mask)

        output = output.view(n_head, sz_b, len_x, d_v)
        output = (
            output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_x, -1)
        )  # b x lq x (n*dv)

        output = self.fc(output)

        output = self.dropout(output) + residual
        return output, attn


class ScaledDotProductAttention(nn.Module):
    """Scaled Dot-Product Attention"""

    def __init__(self, temperature, dropout):
        super().__init__()
        self.temperature = temperature
        self.softmax = nn.Softmax(dim=2)
        self.dropout = nn.Dropout(dropout)

    def forward(self, q, k, v, mask=None):
        attn = torch.bmm(q, k.transpose(1, 2))
        attn = attn / self.temperature

        if mask is not None:
            attn = attn.masked_fill(mask, -np.inf)

        attn = self.softmax(attn)
        p_attn = self.dropout(attn)

        output = torch.bmm(p_attn, v)
        return output, attn


class MelStyleEncoder(nn.Module):
    """MelStyleEncoder"""

    def __init__(
        self,
        n_mel_channels=80,
        style_hidden=128,
        style_vector_dim=256,
        style_kernel_size=5,
        style_head=2,
        dropout=0.1,
    ):
        super(MelStyleEncoder, self).__init__()
        self.in_dim = n_mel_channels
        self.hidden_dim = style_hidden
        self.out_dim = style_vector_dim
        self.kernel_size = style_kernel_size
        self.n_head = style_head
        self.dropout = dropout

        self.spectral = nn.Sequential(
            LinearNorm(self.in_dim, self.hidden_dim),
            Mish(),
            nn.Dropout(self.dropout),
            LinearNorm(self.hidden_dim, self.hidden_dim),
            Mish(),
            nn.Dropout(self.dropout),
        )

        self.temporal = nn.Sequential(
            Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
            Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
        )

        self.slf_attn = MultiHeadAttention(
            self.n_head,
            self.hidden_dim,
            self.hidden_dim // self.n_head,
            self.hidden_dim // self.n_head,
            self.dropout,
        )

        self.fc = LinearNorm(self.hidden_dim, self.out_dim)

    def temporal_avg_pool(self, x, mask=None):
        if mask is None:
            out = torch.mean(x, dim=1)
        else:
            len_ = (~mask).sum(dim=1).unsqueeze(1)
            x = x.masked_fill(mask.unsqueeze(-1), 0)
            x = x.sum(dim=1)
            out = torch.div(x, len_)
        return out

    def forward(self, x, mask=None):
        x = x.transpose(1, 2)
        if mask is not None:
            mask = (mask.int() == 0).squeeze(1)
        max_len = x.shape[1]
        slf_attn_mask = (
            mask.unsqueeze(1).expand(-1, max_len, -1) if mask is not None else None
        )

        # spectral
        x = self.spectral(x)
        # temporal
        x = x.transpose(1, 2)
        x = self.temporal(x)
        x = x.transpose(1, 2)
        # self-attention
        if mask is not None:
            x = x.masked_fill(mask.unsqueeze(-1), 0)
        x, _ = self.slf_attn(x, mask=slf_attn_mask)
        # fc
        x = self.fc(x)
        # temoral average pooling
        w = self.temporal_avg_pool(x, mask=mask)

        return w.unsqueeze(-1)


class MelStyleEncoderVAE(nn.Module):
    def __init__(self, spec_channels, z_latent_dim, emb_dim):
        super().__init__()
        self.ref_encoder = MelStyleEncoder(spec_channels, style_vector_dim=emb_dim)
        self.fc1 = nn.Linear(emb_dim, z_latent_dim)
        self.fc2 = nn.Linear(emb_dim, z_latent_dim)
        self.fc3 = nn.Linear(z_latent_dim, emb_dim)
        self.z_latent_dim = z_latent_dim

    def reparameterize(self, mu, logvar):
        if self.training:
            std = torch.exp(0.5 * logvar)
            eps = torch.randn_like(std)
            return eps.mul(std).add_(mu)
        else:
            return mu

    def forward(self, inputs, mask=None):
        enc_out = self.ref_encoder(inputs.squeeze(-1), mask).squeeze(-1)
        mu = self.fc1(enc_out)
        logvar = self.fc2(enc_out)
        posterior = D.Normal(mu, torch.exp(logvar))
        kl_divergence = D.kl_divergence(
            posterior, D.Normal(torch.zeros_like(mu), torch.ones_like(logvar))
        )
        loss_kl = kl_divergence.mean()

        z = posterior.rsample()
        style_embed = self.fc3(z)

        return style_embed.unsqueeze(-1), loss_kl

    def infer(self, inputs=None, random_sample=False, manual_latent=None):
        if manual_latent is None:
            if random_sample:
                dev = next(self.parameters()).device
                posterior = D.Normal(
                    torch.zeros(1, self.z_latent_dim, device=dev),
                    torch.ones(1, self.z_latent_dim, device=dev),
                )
                z = posterior.rsample()
            else:
                enc_out = self.ref_encoder(inputs.transpose(1, 2))
                mu = self.fc1(enc_out)
                z = mu
        else:
            z = manual_latent
        style_embed = self.fc3(z)
        return style_embed.unsqueeze(-1), z


class ActNorm(nn.Module):
    def __init__(self, channels, ddi=False, **kwargs):
        super().__init__()
        self.channels = channels
        self.initialized = not ddi

        self.logs = nn.Parameter(torch.zeros(1, channels, 1))
        self.bias = nn.Parameter(torch.zeros(1, channels, 1))

    def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs):
        if x_mask is None:
            x_mask = torch.ones(x.size(0), 1, x.size(2)).to(
                device=x.device, dtype=x.dtype
            )
        x_len = torch.sum(x_mask, [1, 2])
        if not self.initialized:
            self.initialize(x, x_mask)
            self.initialized = True

        if reverse:
            z = (x - self.bias) * torch.exp(-self.logs) * x_mask
            logdet = None
            return z
        else:
            z = (self.bias + torch.exp(self.logs) * x) * x_mask
            logdet = torch.sum(self.logs) * x_len  # [b]
            return z, logdet

    def store_inverse(self):
        pass

    def set_ddi(self, ddi):
        self.initialized = not ddi

    def initialize(self, x, x_mask):
        with torch.no_grad():
            denom = torch.sum(x_mask, [0, 2])
            m = torch.sum(x * x_mask, [0, 2]) / denom
            m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom
            v = m_sq - (m**2)
            logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6))

            bias_init = (
                (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype)
            )
            logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype)

            self.bias.data.copy_(bias_init)
            self.logs.data.copy_(logs_init)


class InvConvNear(nn.Module):
    def __init__(self, channels, n_split=4, no_jacobian=False, **kwargs):
        super().__init__()
        assert n_split % 2 == 0
        self.channels = channels
        self.n_split = n_split
        self.no_jacobian = no_jacobian

        w_init = torch.linalg.qr(
            torch.FloatTensor(self.n_split, self.n_split).normal_()
        )[0]
        if torch.det(w_init) < 0:
            w_init[:, 0] = -1 * w_init[:, 0]
        self.weight = nn.Parameter(w_init)

    def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs):
        b, c, t = x.size()
        assert c % self.n_split == 0
        if x_mask is None:
            x_mask = 1
            x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t
        else:
            x_len = torch.sum(x_mask, [1, 2])

        x = x.view(b, 2, c // self.n_split, self.n_split // 2, t)
        x = (
            x.permute(0, 1, 3, 2, 4)
            .contiguous()
            .view(b, self.n_split, c // self.n_split, t)
        )

        if reverse:
            if hasattr(self, "weight_inv"):
                weight = self.weight_inv
            else:
                weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
            logdet = None
        else:
            weight = self.weight
            if self.no_jacobian:
                logdet = 0
            else:
                logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len  # [b]

        weight = weight.view(self.n_split, self.n_split, 1, 1)
        z = F.conv2d(x, weight)

        z = z.view(b, 2, self.n_split // 2, c // self.n_split, t)
        z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask
        if reverse:
            return z
        else:
            return z, logdet

    def store_inverse(self):
        self.weight_inv = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)