|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from torch import cuda, bfloat16 |
|
import torch |
|
import transformers |
|
from transformers import AutoTokenizer |
|
from time import time |
|
import chromadb |
|
from chromadb.config import Settings |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.chains import RetrievalQA |
|
from langchain.vectorstores import Chroma |
|
from langchain.document_loaders import PyPDFLoader |
|
import requests |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
|
|
|
|
|
|
token_access = HF_API_TOKEN |
|
headers = {"Authorization": f"Bearer {token_access}"} |
|
|
|
|
|
|
|
model_id = 'mistralai/Mistral-7B-Instruct-v0.1' |
|
model_config = transformers.AutoConfig.from_pretrained( |
|
model_id, |
|
max_new_tokens=200 |
|
) |
|
|
|
model = transformers.AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
trust_remote_code=True, |
|
config=model_config, |
|
quantization_config=bnb_config, |
|
device_map='auto', |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
query_pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
torch_dtype=torch.float16, |
|
device_map="auto", max_new_tokens=200) |
|
|
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
|
|
URL = "https://www.esmo.org/content/download/6594/114963/1/ES-Cancer-de-Mama-Guia-para-Pacientes.pdf" |
|
response = requests.get(URL) |
|
open("ES-Cancer-de-Mama-Guia-para-Pacientes.pdf", "wb").write(response.content) |
|
loader = PyPDFLoader("ES-Cancer-de-Mama-Guia-para-Pacientes.pdf") |
|
documents = loader.load() |
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20) |
|
all_splits = text_splitter.split_documents(documents) |
|
|
|
model_name = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" |
|
|
|
embeddings = HuggingFaceEmbeddings(model_name=model_name) |
|
|
|
vectordb = Chroma.from_documents(documents=all_splits, embedding=embeddings, persist_directory="chroma_db") |
|
|
|
pipeline=query_pipeline |
|
query = message |
|
docs = vectordb.similarity_search_with_score(query) |
|
context = [] |
|
for doc, score in docs: |
|
if score < 7: |
|
doc_details = doc.to_json()['kwargs'] |
|
context.append(doc_details['page_content']) |
|
if len(context) != 0: |
|
messages = [ |
|
{"role": "user", "content": "Bas谩ndote en la siguiente informaci贸n: " + "\n".join(context) + "\n Responde en castellano a la pregunta: " + query}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_k=50, |
|
top_p=top_p) |
|
answer = outputs[0]["generated_text"] |
|
return answer[answer.rfind("[/INST]") + 8:], docs |
|
else: |
|
return "No tengo informaci贸n para responder a esta pregunta", docs |
|
|
|
|
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |