Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,30 @@
|
|
1 |
import streamlit as st
|
2 |
import whisper
|
|
|
3 |
from transformers import pipeline
|
4 |
import spacy
|
5 |
from summa import keywords
|
6 |
import datetime
|
7 |
import os
|
|
|
|
|
8 |
|
9 |
@st.cache_resource
|
10 |
def load_models():
|
11 |
-
|
|
|
12 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
13 |
nlp = spacy.load("en_core_web_sm")
|
14 |
-
return whisper_model, summarizer, nlp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def extract_action_items(text, nlp):
|
17 |
doc = nlp(text)
|
@@ -39,30 +52,33 @@ def extract_action_items(text, nlp):
|
|
39 |
def main():
|
40 |
st.title("🤖 Smart AI Meeting Assistant")
|
41 |
|
42 |
-
whisper_model, summarizer, nlp = load_models()
|
43 |
|
44 |
audio_file = st.file_uploader("Upload meeting audio", type=["wav", "mp3", "m4a", "ogg", "flac"])
|
45 |
|
46 |
if audio_file is not None:
|
47 |
file_path = f"uploaded_audio_{datetime.datetime.now().timestamp()}.wav"
|
48 |
|
49 |
-
# Save uploaded file
|
50 |
with open(file_path, "wb") as f:
|
51 |
f.write(audio_file.getbuffer())
|
52 |
|
53 |
st.subheader("Meeting Transcription")
|
54 |
with st.spinner("Transcribing audio..."):
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
result = whisper_model.transcribe(file_path)
|
62 |
-
transcript = result["text"]
|
63 |
|
64 |
st.write(transcript)
|
65 |
-
os.remove(file_path)
|
66 |
|
67 |
st.subheader("Meeting Summary")
|
68 |
with st.spinner("Generating summary..."):
|
|
|
1 |
import streamlit as st
|
2 |
import whisper
|
3 |
+
import torch
|
4 |
from transformers import pipeline
|
5 |
import spacy
|
6 |
from summa import keywords
|
7 |
import datetime
|
8 |
import os
|
9 |
+
from pydub import AudioSegment
|
10 |
+
import concurrent.futures
|
11 |
|
12 |
@st.cache_resource
|
13 |
def load_models():
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
whisper_model = whisper.load_model("small").to(device) # Using 'small' for faster speed
|
16 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
17 |
nlp = spacy.load("en_core_web_sm")
|
18 |
+
return whisper_model, summarizer, nlp, device
|
19 |
+
|
20 |
+
def split_audio(file_path, chunk_length_ms=60000): # 60 seconds per chunk
|
21 |
+
audio = AudioSegment.from_file(file_path)
|
22 |
+
chunks = [audio[i : i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
|
23 |
+
return chunks
|
24 |
+
|
25 |
+
def transcribe_chunk(whisper_model, chunk_path, device):
|
26 |
+
options = {"fp16": False} if device == "cpu" else {"fp16": True}
|
27 |
+
return whisper_model.transcribe(chunk_path, **options)["text"]
|
28 |
|
29 |
def extract_action_items(text, nlp):
|
30 |
doc = nlp(text)
|
|
|
52 |
def main():
|
53 |
st.title("🤖 Smart AI Meeting Assistant")
|
54 |
|
55 |
+
whisper_model, summarizer, nlp, device = load_models()
|
56 |
|
57 |
audio_file = st.file_uploader("Upload meeting audio", type=["wav", "mp3", "m4a", "ogg", "flac"])
|
58 |
|
59 |
if audio_file is not None:
|
60 |
file_path = f"uploaded_audio_{datetime.datetime.now().timestamp()}.wav"
|
61 |
|
|
|
62 |
with open(file_path, "wb") as f:
|
63 |
f.write(audio_file.getbuffer())
|
64 |
|
65 |
st.subheader("Meeting Transcription")
|
66 |
with st.spinner("Transcribing audio..."):
|
67 |
+
chunks = split_audio(file_path)
|
68 |
+
chunk_paths = []
|
69 |
+
|
70 |
+
for i, chunk in enumerate(chunks):
|
71 |
+
chunk_path = f"chunk_{i}.wav"
|
72 |
+
chunk.export(chunk_path, format="wav")
|
73 |
+
chunk_paths.append(chunk_path)
|
74 |
+
|
75 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
76 |
+
transcripts = list(executor.map(lambda cp: transcribe_chunk(whisper_model, cp, device), chunk_paths))
|
77 |
|
78 |
+
transcript = " ".join(transcripts)
|
|
|
|
|
79 |
|
80 |
st.write(transcript)
|
81 |
+
os.remove(file_path)
|
82 |
|
83 |
st.subheader("Meeting Summary")
|
84 |
with st.spinner("Generating summary..."):
|