Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the model and tokenizer
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("abdulwaheed1/urdu_to_english_translation_mbart")
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("abdulwaheed1/urdu_to_english_translation_mbart")
|
8 |
+
|
9 |
+
# Function to translate Urdu text to English
|
10 |
+
def translate_urdu_to_english(urdu_text):
|
11 |
+
try:
|
12 |
+
# Tokenize the input Urdu text
|
13 |
+
inputs = tokenizer(urdu_text, return_tensors="pt", padding=True, truncation=True)
|
14 |
+
|
15 |
+
# Generate translation using the model
|
16 |
+
with torch.no_grad():
|
17 |
+
translated_tokens = model.generate(**inputs, max_length=512)
|
18 |
+
|
19 |
+
# Decode the generated tokens into English text
|
20 |
+
translated_text = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
21 |
+
|
22 |
+
return translated_text
|
23 |
+
|
24 |
+
except Exception as e:
|
25 |
+
# Return an error message if something goes wrong
|
26 |
+
return f"Error in translation: {str(e)}"
|
27 |
+
|
28 |
+
# Set up Gradio interface
|
29 |
+
iface = gr.Interface(
|
30 |
+
fn=translate_urdu_to_english, # Function to call
|
31 |
+
inputs=gr.Textbox(label="Enter Urdu Text"), # Textbox for user input
|
32 |
+
outputs=gr.Textbox(label="Translated English Text"), # Textbox for displaying output
|
33 |
+
live=True # Optionally, enable live translation (i.e., as the user types)
|
34 |
+
)
|
35 |
+
|
36 |
+
# Launch the Gradio interface
|
37 |
+
iface.launch()
|