Spaces:
Sleeping
Sleeping
from byaldi import RAGMultiModalModel | |
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor | |
import torch | |
from qwen_vl_utils import process_vision_info | |
from PIL import Image | |
import gradio as gr | |
import re | |
rag = RAGMultiModalModel.from_pretrained("vidore/colpali") | |
vlm = Qwen2VLForConditionalGeneration.from_pretrained( | |
"Qwen/Qwen2-VL-2B-Instruct", | |
torch_dtype=torch.float32, | |
trust_remote_code=True, | |
device_map="auto", | |
) | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True) | |
def extract_text(image, query): | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": query}, | |
], | |
} | |
] | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt") | |
inputs = inputs.to("cpu") | |
with torch.no_grad(): | |
generated_ids = vlm.generate(**inputs, max_new_tokens=200, temperature=0.7, top_p=0.9) | |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
return processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
def search_text(text, query): | |
if query: | |
searched_text = re.sub(f'({re.escape(query)})', r'<span style="background-color: yellow;">\1</span>', text, flags=re.IGNORECASE) | |
else: | |
searched_text = text | |
return searched_text | |
def extraction(image, query): | |
extracted_text = extract_text(image, query) | |
return extracted_text, extracted_text # return twice - one to display output and the other for state management | |
""" | |
Main App | |
""" | |
with gr.Blocks() as main_app: | |
gr.Markdown("# Document Reader using OCR(English/Hindi)") | |
gr.Markdown("### Use Doc_Reader to extract text out of documents - images(OCR) or ask questions based on the input image") | |
with gr.Row(): | |
with gr.Column(): | |
img_input = gr.Image(type="pil", label="Upload an Image") | |
gr.Markdown(""" | |
### Please use this prompt for text extraction | |
**What text can you identify in this image? Include everything, even if it's partially obscured or in the background.** | |
""") | |
query_input = gr.Textbox(label="Enter query for retrieval", placeholder="Query/Prompt") | |
extract_button = gr.Button("Read Doc!") | |
search_input = gr.Textbox(label="Enter search term", placeholder="Search") | |
search_button = gr.Button("Search!") | |
with gr.Column(): | |
extracted_text_op = gr.Textbox(label="Output") | |
search_text_op = gr.HTML(label="Search Results") | |
download_button = gr.Button("Download Plain Text") | |
# Retrieval | |
extracted_text_state = gr.State() | |
extract_button.click( | |
extraction, | |
inputs=[img_input, query_input], | |
outputs=[extracted_text_op, extracted_text_state] | |
) | |
# Search | |
search_button.click( | |
search_text, | |
inputs=[extracted_text_state, search_input], | |
outputs=[search_text_op] | |
) | |
# Download | |
download_button.click( | |
lambda text: gr.File.save_text_to_file(text, "extracted_text.txt"), | |
inputs=[extracted_text_state], | |
outputs=[gr.File(label="Download Extracted Text")] | |
) | |
main_app.launch() |