Spaces:
Sleeping
Sleeping
File size: 27,657 Bytes
e94100d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
分词器
"""
from collections import defaultdict
import json
import logging
import re
from typing import *
import unicodedata
from tqdm import tqdm
from toolbox.string.character import Character, LowerCase, Pattern
logger = logging.getLogger(__file__)
_DEFAULT_SPLITTER_NAME = 'unknown'
class Splitter(object):
def __init__(self, name=_DEFAULT_SPLITTER_NAME):
self.name = name
def split(self, text: str) -> List[str]:
raise NotImplementedError()
def post_process(self, tokens: List[List[str]]):
return tokens
class ByCharSplitterV1(Splitter):
def __init__(self, name=_DEFAULT_SPLITTER_NAME):
super().__init__(name=name)
def split(self, text: str) -> List[str]:
return self._split(text)
@staticmethod
def _split(text: str) -> List[str]:
flag = Character.f_unknown
sep = '[sep]'
ret = ''
for c in text:
if Character.is_hyphens(c):
ret += c
flag = Character.f_is_hyphens
elif Character.is_punctuation(c) or Character.is_cjk_character(c) or Character.is_jap_character(c):
if flag != Character.f_is_hyphens:
c = sep + c
ret += c
flag = Character.f_is_punctuation
elif Character.is_space(c):
# 连续的多个空隔, 不能合并为 1 个. 合并后, 分出的词不等于原来输入的别名.
if flag != Character.f_is_space:
c = sep + c
ret += c
flag = Character.f_is_space
elif Character.is_alpha(c):
if flag not in (Character.f_is_alpha, Character.f_is_hyphens):
c = sep + c
ret += c
flag = Character.f_is_alpha
elif Character.is_num(c):
if flag not in (Character.f_is_num, Character.f_is_hyphens):
c = sep + c
ret += c
flag = Character.f_is_num
else:
if flag not in (Character.f_unknown, Character.f_is_hyphens):
c = sep + c
ret += c
flag = Character.f_unknown
ret = ret.split(sep)
ret = [ch for ch in ret if ch != '']
if len(''.join(ret)) != len(text):
raise AssertionError('this method should not change the char num. '
'text: {}, ret: {}'.format(text, ''.join(ret)))
return ret
class ByCharSplitterV2(Splitter):
"""
在正则表达式的锚点识别时, `3000-3999` 应能分割出 `000`, 因此, 连续的数字须视作一个 token.
于是定义了此类, 以区别于将连续的数字被识别为多个 token.
ByCharSplitterV1 中, 连续的数字如 `3000` 将被分割为 ['3', '0', '0', '0']
"""
def __init__(self, name=_DEFAULT_SPLITTER_NAME):
super().__init__(name=name)
def split(self, text: str) -> List[str]:
return self._split(text)
@staticmethod
def _split(text: str) -> List[str]:
"""将 text 分割为 token list, 然后再按 token 到 trie 树匹配, 分词. """
flag = Character.f_unknown
sep = '[sep]'
ret = ''
for c in text:
if Character.is_hyphens(c):
# 3000-3999 应能分割出 000, 因此, 连字符不能生效.
c = sep + c
ret += c
flag = Character.f_is_hyphens
elif Character.is_punctuation(c) or Character.is_cjk_character(c) or Character.is_jap_character(c):
if flag != Character.f_is_hyphens:
c = sep + c
ret += c
flag = Character.f_is_punctuation
elif Character.is_space(c):
# 连续的多个空隔, 不能合并为 1 个. 合并后, 分出的词不等于原来输入的别名.
if flag != Character.f_is_space:
c = sep + c
ret += c
flag = Character.f_is_space
elif Character.is_alpha(c):
if flag not in (Character.f_is_alpha, Character.f_is_hyphens):
c = sep + c
ret += c
flag = Character.f_is_alpha
elif Character.is_num(c):
# 3000-3999 应能分割出 000, 因此, 连续的数字视作一个 token.
if flag not in (Character.f_is_hyphens,):
c = sep + c
ret += c
flag = Character.f_is_num
else:
if flag not in (Character.f_unknown, Character.f_is_hyphens):
c = sep + c
ret += c
flag = Character.f_unknown
ret = ret.split(sep)
ret = [ch for ch in ret if ch != '']
if len(''.join(ret)) != len(text):
raise AssertionError('this method should not change the char num. '
'text: {}, ret: {}'.format(text, ''.join(ret)))
return ret
class ListSplitter(Splitter):
def split(self, text: str):
return list(text)
class ListEncodeOneSplitter(Splitter):
def split(self, text: str):
result = list()
for c in text:
dummy = '[{}]'.format(ord(c))
result.append(dummy)
return result
def post_process(self, tokens: List[List[str]]):
tokens_ = list()
for token in tokens:
token_ = list()
for t in token:
idx = t[1:-1]
t = chr(int(idx))
token_.append(t)
tokens_.append(token_)
return tokens_
_DEFAULT_SPLITTER_NAME_TO_SPLITTER = {
'by_char_splitter_v1': ByCharSplitterV1(),
'by_char_splitter_v2': ByCharSplitterV2(),
'list_splitter': ListSplitter(),
'list_encoder_one_splitter': ListEncodeOneSplitter(),
}
_DEFAULT_TOKENIZER_NAME = 'unknown'
class Tokenizer(object):
"""Abstract"""
@staticmethod
def lowercase(string: str) -> str:
string = LowerCase.lowercase(string)
return string
def __init__(self, name=_DEFAULT_TOKENIZER_NAME, case_sensitive=False):
self.name = name
self.case_sensitive = case_sensitive
def insert(self, word: str) -> None:
raise NotImplementedError()
def insert_from_list(self, words: Iterable[Any]) -> None:
words = cast(List[Any], words)
if len(words) == 0:
return None
for word in tqdm(words):
self.insert(word)
def insert_black(self, word: str) -> None:
raise NotImplementedError()
def insert_black_from_list(self, words: Iterable[Any]) -> None:
words = cast(List[Any], words)
if len(words) == 0:
return None
for word in tqdm(words):
self.insert_black(word)
def tokenize(self, text: str, full_mode: bool = False) -> Tuple[List[str], List[bool]]:
raise NotImplementedError()
@staticmethod
def _merge_tokens(tokens: List[str], isword_list: List[bool]) -> Tuple[List[str], List[bool]]:
"""
在 tokenize 分词后, 由于应用了黑名单, 有些分割出的词被标记为 False,
这导致结果中出现连续的两个 False.
在 segmenter 中, 多个分词器选后执行, 连续的两个 False 应合并, 以优化后面的分词的效果.
这里, 只合并连续的两个 False, 不处理其它符号.
"""
tokens2, isword_list2 = list(), list()
false_token = ''
for token, isword in zip(tokens, isword_list):
if isword is False:
false_token += str(token)
continue
if false_token != '':
tokens2.append(false_token)
isword_list2.append(False)
tokens2.append(token)
isword_list2.append(isword)
false_token = ''
else:
if false_token != '':
tokens2.append(false_token)
isword_list2.append(False)
return tokens2, isword_list2
class TrieNode(object):
"""建立词典的Trie树节点"""
def __init__(self, t_word=None):
self.t_word = t_word
self.children = dict()
def add_children(self, k, v):
self.children[k] = v
@property
def text(self):
if self.t_word is None:
return None
return ''.join(self.t_word)
@property
def isword(self):
if self.t_word is None:
return False
return True
def __repr__(self):
return '<{}.{} t_word={}>'.format(self.__module__, self.__class__.__name__, self.t_word)
class FastTokenizer(Tokenizer):
@staticmethod
def demo1():
fast = FastTokenizer()
fast.insert('我要退款')
fast.insert('色彩显示')
fast.insert('我要')
fast.insert('退款')
fast.insert('eid')
fast.insert('手机')
fast.insert('机不')
text = '手机不错我要退款'
c = fast.tokenize(text, full_mode=True)
print(c)
return
@staticmethod
def demo2():
fast = FastTokenizer(splitter=ListEncodeOneSplitter())
# fast.insert('พูดว่')
fast.insert('พูดว่า')
fast.insert('นะ')
fast.insert('พูดถึง')
fast.insert('คำพูด')
fast.insert('บอ')
text = 'พูดว่าอะไรนะ'
c = fast.tokenize(text, full_mode=False)
print(c)
return
@staticmethod
def token_list_to_string_list(token_list: List[List[str]]) -> List[str]:
"""因为 spliter 是将句子分割为 List[str], tokenize 是将列表中的子字符串合并为词. """
ret = list()
for l in token_list:
ret.append(''.join(l))
return ret
def __init__(self, splitter: Optional[Union[Splitter, str]] = None, name=_DEFAULT_TOKENIZER_NAME, case_sensitive=False):
if isinstance(splitter, str):
splitter = _DEFAULT_SPLITTER_NAME_TO_SPLITTER[splitter]
self.splitter = splitter or ByCharSplitterV1()
self.trie = TrieNode()
self._black_list: List[str] = list()
super(FastTokenizer, self).__init__(name=name, case_sensitive=case_sensitive)
def insert(self, word: str) -> None:
word = str(word)
if not self.case_sensitive:
word = self.lowercase(word)
t_word = self.splitter.split(word)
self._insert_node(t_word)
def insert_black(self, word: str) -> None:
"""
黑名单.
如遇到 `watch tv` 时, 不要识别出 `watch`.
注意: 因为是最大匹配, 所以在 `watch` 在黑名单时, `watch tv` 是可以识别到的.
"""
if word not in self._black_list:
self.insert(word)
self._black_list.append(word)
def _insert_node(self, t_word: List[str]) -> None:
now = self.trie
for t in t_word[:-1]:
if t not in now.children:
now.add_children(t, TrieNode())
now = now.children[t]
t = t_word[-1]
if t not in now.children:
now.add_children(t, TrieNode(t_word))
else:
now.children[t].t_word = t_word
def _tokenize(self, t_word: list, full_mode: bool = False):
outlst, iswlst = list(), list()
l = len(t_word)
b_idx = 0
l_idx = 0
max_e_idx = 0
while b_idx < l:
now = self.trie
found = False
ptr = b_idx
e_idx = None
while True:
t = t_word[ptr]
if not self.case_sensitive:
t = self.lowercase(t)
if t not in now.children and e_idx is not None:
found = True
break
if t not in now.children and e_idx is None:
break
if now.isword and full_mode:
if full_mode:
outlst.append(t_word[b_idx: ptr])
iswlst.append(True)
now = now.children[t]
ptr += 1
if now.isword:
e_idx = ptr
if ptr == l and e_idx is None:
break
if ptr == l and e_idx is not None:
found = True
break
if found is True:
if l_idx != b_idx:
outlst.append(t_word[l_idx: b_idx])
iswlst.append(False)
outlst.append(t_word[b_idx: e_idx])
iswlst.append(True)
max_e_idx = max(max_e_idx, e_idx)
if full_mode:
b_idx += 1
else:
b_idx = e_idx
l_idx = b_idx
else:
b_idx += 1
if max_e_idx < l:
outlst.append(t_word[l_idx:l])
iswlst.append(False)
return outlst, iswlst
def tokenize(self, text: Union[str, List[str]], full_mode=False) -> Tuple[List[str], List[bool]]:
if isinstance(text, list):
text_list = text
else:
text_list = [text]
outlst, iswlst = list(), list()
for text in text_list:
t_word = self.splitter.split(text)
outlst_tmp, iswlst_tmp = self._tokenize(t_word, full_mode)
outlst.extend(outlst_tmp)
iswlst.extend(iswlst_tmp)
outlst = self.splitter.post_process(outlst)
outlst = self.token_list_to_string_list(outlst)
# 应用黑名单.
for idx, out in enumerate(outlst):
if out in self._black_list:
iswlst[idx] = False
outlst, iswlst = self._merge_tokens(outlst, iswlst)
return outlst, iswlst
class TagTokenizer(FastTokenizer):
def __init__(self, name=_DEFAULT_TOKENIZER_NAME, case_sensitive=False):
super().__init__(name=name, case_sensitive=case_sensitive)
self._word2flags_dict = defaultdict(list)
def insert(self, word: str, tag: str = None) -> None:
if tag is not None:
self._word2flags_dict[word].append(tag)
super().insert(word)
def tokenize(self, text: Union[str, List[str]], full_mode: bool = False) -> Tuple[List[str], List[bool]]:
outlst, iswlst = super().tokenize(text)
iswlst2 = list()
for out, isw in zip(outlst, iswlst):
if isw is True:
iswlst2.append(self._word2flags_dict.get(out, True))
else:
iswlst2.append(False)
return outlst, iswlst2
class RegularTokenizer(Tokenizer):
"""
不同于 FastTokenizer, 此处用正则表示代替词来进行匹配.
优化:
1. 基于正则表达式 index 的快速查找.
2. re.compile. 在遇到无效正则表达式时, 会报错.
"""
@staticmethod
def demo1():
regular = RegularTokenizer()
regular.insert('我要退款')
regular.insert('色彩显示')
regular.insert('我要')
regular.insert('退款')
regular.insert('eid')
regular.insert('手机')
regular.insert('机不')
regular.insert(r'\d+左右')
text = '1500左右的手机不错我要退款'
ret = regular.tokenize(text, full_mode=False)
print(ret)
return
@staticmethod
def _outlst_iswlst_append(token, isword, outlst, iswlst):
if len(token) > 0:
outlst.append(token)
iswlst.append(isword)
return outlst, iswlst
def __init__(self, name=_DEFAULT_TOKENIZER_NAME, case_sensitive=False):
self.regular_quick_find_tokenizer = RegularQuickFindTokenizer()
self._black_list = list()
super(RegularTokenizer, self).__init__(name=name, case_sensitive=case_sensitive)
def insert(self, word: str) -> None:
"""
:param word: 正则表达式.
"""
self.regular_quick_find_tokenizer.insert(pattern=str(word))
def insert_black(self, word: str) -> None:
"""添加黑名单"""
if word not in self._black_list:
self._black_list.append(word)
def tokenize(self, text: str, full_mode: bool = False) -> Tuple[List[str], List[bool]]:
text = str(text)
if not self.case_sensitive:
text_ = self.lowercase(text)
else:
text_ = text
potential_pattern, no_index_pattern = self.regular_quick_find_tokenizer.get_potential_pattern(text=text_)
# | 取并集, & 取交集.
pattern_set = potential_pattern | no_index_pattern
span_list = list()
for pattern in pattern_set:
try:
if self.case_sensitive:
pattern = re.compile(pattern)
else:
pattern = re.compile(pattern, re.I)
except re.error as e:
logger.error('{}, pattern: {}'.format(e, pattern))
continue
match_iter = re.finditer(pattern, text_)
for match in match_iter:
match_str = match.group(0).strip()
if len(match_str) >= 2:
span_list.append(match.span())
if full_mode:
span_accept = span_list
else:
span_list = sorted(span_list, key=lambda x: x[1] - x[0], reverse=True)
span_list = sorted(span_list, key=lambda x: x[0], reverse=False)
span_accept = [(0, 0)]
for span in span_list:
if span[0] >= span_accept[-1][1]:
span_accept.append(span)
outlst, iswlst = list(), list()
last_idx = None
for b, e in span_accept:
if last_idx is None:
outlst, iswlst = self._outlst_iswlst_append(text[:b], False, outlst, iswlst)
else:
outlst, iswlst = self._outlst_iswlst_append(text[last_idx:b], False, outlst, iswlst)
outlst, iswlst = self._outlst_iswlst_append(text[b:e], True, outlst, iswlst)
last_idx = e
outlst, iswlst = self._outlst_iswlst_append(text[last_idx:], False, outlst, iswlst)
# 应用黑名单.
for idx, out in enumerate(outlst):
if out in self._black_list:
iswlst[idx] = False
return self._merge_tokens(outlst, iswlst)
class RegularQuickFindTokenizer(FastTokenizer):
"""
根据正则表达式的锚点, 快速查找可能在 text 上成立的正则表达式.
1. insert 正则表达式,
2. 获取索引, 并插入分词器,
3. 使用分词器对句子分词, 匹配到的部分就有可能匹配其正则表达式.
"""
@staticmethod
def demo1():
quick = RegularQuickFindTokenizer()
quick.insert('.*[0-9]000.*到[0-9]999.*')
quick.insert('^(?=.*(华为|苹果).*(手机|手表)).*(电脑|平板).*(?=.*小米(手机|手表)).*$')
quick.insert(r'.*(输入密码)0米(\d{2.10}).*')
quick.insert(r'.*(输入|密码)(\d{2.10}).*')
quick.insert('^(?=.*(华为|苹果).*(电脑|平板|手表).*$')
quick.insert('*0米.*(左|右).*')
quick.insert('.*[0-9].*[0-9].*')
quick.insert(r'\d+左右')
text = '3000-3999 的华为手表, 有没有, 1500左右的也可以. '
ret = quick.tokenize(text)
print(ret)
ret = quick.get_potential_pattern(text)
print(ret)
return
def __init__(self, splitter: Optional[Splitter] = None, name=_DEFAULT_TOKENIZER_NAME, case_sensitive=False):
splitter = splitter or ByCharSplitterV2()
self._no_index_pattern: Set[str] = set()
self._index_to_pattern: Dict[str, Set[str]] = defaultdict(set)
super().__init__(splitter=splitter, name=name, case_sensitive=case_sensitive)
def insert(self, pattern: str) -> None:
indexes: List[str] = RegularIndexParse.get_indexes(pattern)
if indexes is None:
self._no_index_pattern.add(pattern)
else:
for index in indexes:
self._index_to_pattern[index].add(pattern)
super(RegularQuickFindTokenizer, self).insert(index)
def get_potential_pattern(self, text: str) -> Tuple[Set[str], Set[str]]:
"""
:return: 两个集合, 第一个是潜在正则表达式集合, 第二个是 insert 进来的无 index 正则,
"""
pattern = set()
# full_mode 默认为 True, 全量匹配所有可能的正则.
outlst, iswlst = self.tokenize(text, full_mode=True)
for out, isw in zip(outlst, iswlst):
if isw is True:
# 这里的方括号索引, 应该不会报错.
pattern.update(self._index_to_pattern[out])
return pattern, self._no_index_pattern
class RegularIndexParse(object):
alp_num_ch = re.compile(Pattern.alp_num_ch)
brackets = re.compile(Pattern.brackets)
square_brackets = re.compile(Pattern.square_brackets)
regex_dsw_find = re.compile(Pattern.regex_dsw_find)
@staticmethod
def demo1():
pattern = r'\d+左右'
ret = RegularIndexParse.get_indexes(pattern)
print(ret)
return
def __init__(self):
pass
@classmethod
def _split_by_brackers(cls, text):
# 按照括号对称分割字符串
brackets = ['(', ')']
result = []
tmp = ''
flag = 0
for s in text:
if s not in brackets:
tmp += s
elif s == '(':
if tmp and flag == 0:
result.append(tmp)
tmp = ''
tmp += s
flag = flag + 1
else:
tmp += s
flag = flag - 1
if flag == 0:
result.append(tmp)
tmp = ''
if tmp:
result.append(tmp)
return result
@classmethod
def _get_index_in_brackets(cls, text):
# 文本中存在括号
# 先查找括号外是否有索引
# 如果没有,则查找括号内的索引组
index = cls._get_index_out_of_brackets(text)
if index:
return [index.group()]
tmps = cls.brackets.findall(text)
index = []
for tmp in tmps:
tmp_index = cls.alp_num_ch.findall(tmp)
if len(index) == 0:
index = tmp_index
elif len(tmp_index) < len(index):
index = tmp_index
return index
@classmethod
def _get_index_out_of_brackets(cls, text):
# 去除正则表达式中, 在圆括号内的文字.
tmp1 = cls.brackets.sub('', text)
# 去除正则表达式中, 方括号部分
tmp2 = cls.square_brackets.sub('', tmp1)
# 去除如 \d+, \s+ 等.
tmp3 = cls.regex_dsw_find.sub('', tmp2)
# 取去除括号后的正则中的第一个文字作为 index.
tmp4 = cls.alp_num_ch.search(tmp3)
return tmp4
@classmethod
def get_indexes(cls, text: str) -> Union[List[str], None]:
indexes = cls._get_index_out_of_brackets(text)
if indexes:
return [indexes.group()]
pieces = cls._split_by_brackers(text)
for p in pieces:
if '(' in p:
if '(' in p[1:-1]:
tmp_index = cls._get_index_in_brackets(p[1:-1])
else:
tmp_index = cls.alp_num_ch.findall(p)
if indexes is None:
indexes = tmp_index
else:
if len(tmp_index) < len(indexes):
indexes = tmp_index
return indexes
class IndivisibleTokenizer(FastTokenizer):
def __init__(self,
indivisible_dict: Dict[str, Tuple[List[str], List[List[str]]]],
case_sensitive=False):
"""
指定分割词 / 不可分割词.
将词分按指定方式分割. 元组中第一项是分词的列表, 第二项是每个子词对应的词性(可以有多个词性).
"""
super(IndivisibleTokenizer, self).__init__(case_sensitive=case_sensitive)
self.word2tags = defaultdict(list)
for word, t_words in indivisible_dict.items():
self.insert(word, t_words)
@classmethod
def from_json_file(cls, filename, case_sensitive=False):
with open(filename, 'r', encoding='utf-8') as f:
indivisible_dict = json.load(f)
return cls(indivisible_dict=indivisible_dict, case_sensitive=case_sensitive)
def insert(self, word: str, tag: Tuple[List[str], List[List[str]]] = None) -> None:
if tag is None:
tag = list()
self.word2tags[word] = tag
super().insert(word)
def tokenize(self, text: Union[str, List[str]], full_mode: bool = False) -> Tuple[List[str], List[bool]]:
outlst, iswlst = super().tokenize(text)
outlst2, iswlst2 = list(), list()
for out, isw in zip(outlst, iswlst):
if isw is True:
word_list, tags_list = self.word2tags[out]
outlst2.extend(word_list)
iswlst2.extend(tags_list)
else:
outlst2.append(out)
iswlst2.append(isw)
return outlst2, iswlst2
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
def demo1():
text = '我想买一个老人用的, 1500左右, huawei watch gt 感觉还可以, 它性价比高吗, 有优惠活动吗?'
fast = FastTokenizer()
fast.insert_from_list(['huawei watch gt', 'huawei p30系列', 'huawei p30 pro'])
# fast.insert('huawei p30系列')
result = fast.tokenize(text)
print(result)
return
def demo2():
text = '我想买一个老人用的, 1500左右, huawei watch gt 感觉还可以, 它性价比高吗, 有优惠活动吗?'
fast = RegularTokenizer()
fast.insert_from_list([r'\d+'])
result = fast.tokenize(text)
print(result)
return
def demo3():
text = '我想买一个老人用的, 1500左右, huawei watch gt 感觉还可以, 它性价比高吗, 有优惠活动吗?'
RegularIndexParse.get_indexes('')
ret = RegularIndexParse.get_indexes('.*[0-9]000.*到[0-9]999.*')
print(ret)
ret = RegularIndexParse.get_indexes('.*[0-9].*[0-9].*')
print(ret)
# ret = RegularIndexParse.get_indexes('.*[0-9]000.*到[0-9]999.*')
# print(ret)
# ret = RegularIndexParse.get_indexes('.*[0-9]000.*到[0-9]999.*')
# print(ret)
# ret = RegularIndexParse.get_indexes('.*[0-9]000.*到[0-9]999.*')
# print(ret)
# quick.insert('^(?=.*(华为|苹果).*(手机|手表)).*(电脑|平板).*(?=.*小米(手机|手表)).*$')
# quick.insert('.*(输入密码)0米(\d{2.10}).*')
# quick.insert('.*(输入|密码)(\d{2.10}).*')
# quick.insert('^(?=.*(华为|苹果).*(电脑|平板|手表).*$')
# quick.insert('*0米.*(左|右).*')
# quick.insert('.*[0-9].*[0-9].*')
return
def demo4():
FastTokenizer.demo2()
# FastTokenizer.demo3()
# RegularQuickFindTokenizer.demo1()
return
if __name__ == '__main__':
# demo1()
# demo2()
# demo3()
demo4()
|