Spaces:
Running
Running
complete app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,78 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
|
4 |
|
|
|
|
|
5 |
|
6 |
+
import json
|
7 |
+
import math
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
from torch.utils.data import DataLoader
|
12 |
+
|
13 |
+
import commons
|
14 |
+
import utils
|
15 |
+
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
16 |
+
from models import SynthesizerTrn
|
17 |
+
from text.symbols import symbols
|
18 |
+
from text import text_to_sequence
|
19 |
+
|
20 |
+
from scipy.io.wavfile import write
|
21 |
+
|
22 |
+
|
23 |
+
def get_text(text, hps):
|
24 |
+
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
25 |
+
if hps.data.add_blank:
|
26 |
+
text_norm = commons.intersperse(text_norm, 0)
|
27 |
+
text_norm = torch.LongTensor(text_norm)
|
28 |
+
# print(text_norm.shape)
|
29 |
+
return text_norm
|
30 |
+
|
31 |
+
|
32 |
+
hps_ms = utils.get_hparams_from_file("/configs/japanese_base.json")
|
33 |
+
hps = utils.get_hparams_from_file("/configs/japanese_base.json")
|
34 |
+
net_g_ms = SynthesizerTrn(
|
35 |
+
len(symbols),
|
36 |
+
hps_ms.data.filter_length // 2 + 1,
|
37 |
+
hps_ms.train.segment_size // hps.data.hop_length,
|
38 |
+
n_speakers=hps_ms.data.n_speakers,
|
39 |
+
**hps_ms.model)
|
40 |
+
|
41 |
+
|
42 |
+
def jtts(spkid, text):
|
43 |
+
sid = torch.LongTensor([spkid]) # speaker identity
|
44 |
+
stn_tst = get_text(text, hps_ms)
|
45 |
+
|
46 |
+
with torch.no_grad():
|
47 |
+
x_tst = stn_tst.unsqueeze(0)
|
48 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
|
49 |
+
# print(stn_tst.size())
|
50 |
+
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][
|
51 |
+
0, 0].data.float().numpy()
|
52 |
+
return
|
53 |
+
|
54 |
+
_ = utils.load_checkpoint("/output.pth", net_g_ms, None)
|
55 |
+
|
56 |
+
|
57 |
+
def tts(text):
|
58 |
+
sid = torch.LongTensor([2]) # speaker identity
|
59 |
+
stn_tst = get_text(text, hps_ms)
|
60 |
+
|
61 |
+
with torch.no_grad():
|
62 |
+
x_tst = stn_tst.unsqueeze(0)
|
63 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
|
64 |
+
# print(stn_tst.size())
|
65 |
+
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][
|
66 |
+
0, 0].data.float().numpy()
|
67 |
+
return "ζε", (hps.data.sampling_rate, audio)
|
68 |
+
|
69 |
+
app = gr.Blocks()
|
70 |
+
with app:
|
71 |
+
tts_input1 = gr.TextArea(label="θ―·θΎε
₯ζ₯θ―ζζ¬", value="γγγ«γ‘γ―γ")
|
72 |
+
# tts_input2 = gr.Dropdown(label="Speaker", choices=hps.speakers, type="index", value=hps.speakers[0])
|
73 |
+
tts_submit = gr.Button("Generate", variant="primary")
|
74 |
+
tts_output1 = gr.Textbox(label="Output Message")
|
75 |
+
tts_output2 = gr.Audio(label="Output Audio")
|
76 |
+
tts_submit.click(tts, [tts_input1], [tts_output1, tts_output2])
|
77 |
+
|
78 |
+
app.launch()
|