VideoMAE / app.py
innat's picture
Update app.py
8ecd497
raw
history blame
4.89 kB
from huggingface_hub import hf_hub_download
import gradio as gr
import numpy as np
import imageio
import tensorflow as tf
from tensorflow import keras
from utils import TubeMaskingGenerator
from utils import read_video, frame_sampling, denormalize, reconstrunction
from utils import IMAGENET_MEAN, IMAGENET_STD, num_frames, patch_size, input_size
from labels import K400_label_map, SSv2_label_map, UCF_label_map
# MODELS = {
# 'K400': [
# './TFVideoMAE_S_K400_16x224_FT',
# './TFVideoMAE_S_K400_16x224_PT'
# ],
# 'SSv2': [
# './TFVideoMAE_S_K400_16x224_FT',
# './TFVideoMAE_S_K400_16x224_PT'
# ],
# 'UCF' : [
# './TFVideoMAE_S_K400_16x224_FT',
# './TFVideoMAE_S_K400_16x224_PT'
# ]
# }
LABEL_MAPS = {
'K400': K400_label_map,
'SSv2': SSv2_label_map,
'UCF' : UCF_label_map
}
def tube_mask_generator(mask_ratio):
window_size = (
num_frames // 2,
input_size // patch_size[0],
input_size // patch_size[1]
)
tube_mask = TubeMaskingGenerator(
input_size=window_size,
mask_ratio=mask_ratio
)
make_bool = tube_mask()
bool_masked_pos_tf = tf.constant(make_bool, dtype=tf.int32)
bool_masked_pos_tf = tf.expand_dims(bool_masked_pos_tf, axis=0)
bool_masked_pos_tf = tf.cast(bool_masked_pos_tf, tf.bool)
return bool_masked_pos_tf
def get_model(model_type):
# ft_path = hf_hub_download(
# repo_id='innat/videomae', filename=model_type + '_FT', repo_type="model"
# )
# pt_path = hf_hub_download(
# repo_id='innat/videomae', filename=model_type + '_PT', repo_type="model"
# )
ft_model = keras.models.load_model(model_type + '_FT')
pt_model = keras.models.load_model(model_type + '_PT')
if 'K400' in model_type:
data_type = 'K400'
elif 'SSv2' in model_type:
data_type = 'SSv2'
else:
data_type = 'UCF'
label_map = LABEL_MAPS.get(data_type)
label_map = K400_label_map
label_map = {v: k for k, v in label_map.items()}
return ft_model, pt_model, label_map
def inference(video_file, model_type, mask_ratio):
# get sample data
container = read_video(video_file)
frames = frame_sampling(container, num_frames=num_frames)
# get models
bool_masked_pos_tf = tube_mask_generator(mask_ratio)
ft_model, pt_model, label_map = get_model(model_type)
ft_model.trainable = False
pt_model.trainable = False
# inference on fine-tune model
outputs_ft = ft_model(frames[None, ...], training=False)
probabilities = tf.nn.softmax(outputs_ft).numpy().squeeze(0)
confidences = {
label_map[i]: float(probabilities[i]) for i in np.argsort(probabilities)[::-1]
}
# inference on pre-trained model
outputs_pt = pt_model(frames[None, ...], bool_masked_pos_tf, training=False)
reconstruct_output, mask = reconstrunction(
frames[None, ...], bool_masked_pos_tf, outputs_pt
)
# post process
input_frame = denormalize(frames)
input_mask = denormalize(mask[0] * frames)
output_frame = denormalize(reconstruct_output)
frames = []
for frame_a, frame_b, frame_c in zip(input_frame, input_mask, output_frame):
combined_frame = np.hstack([frame_a, frame_b, frame_c])
frames.append(combined_frame)
combined_gif = 'combined.gif'
imageio.mimsave(combined_gif, frames, duration=300, loop=0)
return confidences, combined_gif
def main():
datasets = ['K400', 'SSv2', 'UCF']
ALL_MODELS = [
'TFVideoMAE_L_K400_16x224',
'TFVideoMAE_B_SSv2_16x224',
'TFVideoMAE_B_UCF_16x224',
]
sample_example = [
["examples/k400.mp4", ALL_MODELS[0], 0.9],
["examples/k400.mp4", ALL_MODELS[1], 0.8],
["examples/ucf.mp4", ALL_MODELS[2], 0.7],
]
iface = gr.Interface(
fn=inference,
inputs=[
gr.Video(type="file", label="Input Video"),
gr.Dropdown(
choices=ALL_MODELS,
value="TFVideoMAE_S_K400_16x224",
label="Model"
),
# gr.Radio(
# datasets,
# type='value',
# default=datasets[0],
# label='Dataset',
# ),
gr.Slider(
0.5,
1.0,
step=0.1,
default=0.5,
label='Mask Ratio'
)
],
outputs=[
gr.Label(num_top_classes=3, label='scores'),
gr.Image(type="filepath", label='reconstructed')
],
examples=sample_example,
title="VideoMAE",
description="Keras reimplementation of <a href='https://github.com/innat/VideoMAE'>VideoMAE</a> is presented here."
)
iface.launch()
if __name__ == '__main__':
main()