File size: 4,895 Bytes
1ae4494
24cfc1b
 
 
 
 
 
 
 
 
 
 
 
36e374f
8ecd497
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc8456
 
 
 
 
 
24cfc1b
3ee2d3e
24cfc1b
 
 
 
 
 
 
3ee2d3e
24cfc1b
 
 
 
 
 
 
 
36e374f
8ecd497
 
 
 
 
 
1ae4494
8ecd497
 
36e374f
 
 
 
 
 
 
bbc8456
 
c58787f
bbc8456
 
24cfc1b
 
 
36e374f
bbc8456
24cfc1b
 
bbc8456
 
3ee2d3e
36e374f
f811062
 
24cfc1b
 
 
 
 
 
 
 
 
 
 
 
 
 
3a82e83
24cfc1b
 
 
 
 
 
 
 
 
 
 
9ffae4a
24cfc1b
 
3ee2d3e
bbc8456
46dfc72
 
 
 
 
 
 
bbc8456
f9052ef
7ebe913
d2b5ae1
3ee2d3e
 
 
 
 
 
36e374f
5bcbb0a
36e374f
 
52119aa
36e374f
 
 
 
 
 
3a82e83
bbc8456
 
 
 
3ee2d3e
 
 
 
 
9ffae4a
3ee2d3e
bbc8456
3ee2d3e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from huggingface_hub import hf_hub_download
import gradio as gr
import numpy as np
import imageio

import tensorflow as tf
from tensorflow import keras

from utils import TubeMaskingGenerator
from utils import read_video, frame_sampling, denormalize, reconstrunction
from utils import IMAGENET_MEAN, IMAGENET_STD, num_frames, patch_size, input_size
from labels import K400_label_map, SSv2_label_map, UCF_label_map


# MODELS = {
#     'K400': [
#         './TFVideoMAE_S_K400_16x224_FT',
#         './TFVideoMAE_S_K400_16x224_PT'
#         ],
#     'SSv2': [
#         './TFVideoMAE_S_K400_16x224_FT',
#         './TFVideoMAE_S_K400_16x224_PT'
#         ],
#     'UCF' : [
#         './TFVideoMAE_S_K400_16x224_FT',
#         './TFVideoMAE_S_K400_16x224_PT'
#         ]
# }

LABEL_MAPS = {
    'K400': K400_label_map,
    'SSv2': SSv2_label_map,
    'UCF' : UCF_label_map 
}

def tube_mask_generator(mask_ratio):
    window_size = (
        num_frames // 2, 
        input_size // patch_size[0], 
        input_size // patch_size[1]
    )
    tube_mask = TubeMaskingGenerator(
        input_size=window_size, 
        mask_ratio=mask_ratio
    )
    make_bool = tube_mask()
    bool_masked_pos_tf = tf.constant(make_bool, dtype=tf.int32)
    bool_masked_pos_tf = tf.expand_dims(bool_masked_pos_tf, axis=0)
    bool_masked_pos_tf = tf.cast(bool_masked_pos_tf, tf.bool)
    return bool_masked_pos_tf


def get_model(model_type):
    # ft_path = hf_hub_download(
    #     repo_id='innat/videomae', filename=model_type + '_FT', repo_type="model"
    # )
    # pt_path = hf_hub_download(
    #     repo_id='innat/videomae', filename=model_type + '_PT', repo_type="model"
    # )

    ft_model = keras.models.load_model(model_type + '_FT')
    pt_model = keras.models.load_model(model_type + '_PT')

    if 'K400' in model_type:
        data_type = 'K400'
    elif 'SSv2' in model_type:
        data_type = 'SSv2'
    else:
        data_type = 'UCF'

    label_map = LABEL_MAPS.get(data_type)
    label_map = K400_label_map
    label_map = {v: k for k, v in label_map.items()}
    
    return ft_model, pt_model, label_map


def inference(video_file, model_type, mask_ratio):
    # get sample data
    container = read_video(video_file)
    frames = frame_sampling(container, num_frames=num_frames)

    # get models
    bool_masked_pos_tf = tube_mask_generator(mask_ratio)
    ft_model, pt_model, label_map = get_model(model_type)
    ft_model.trainable = False
    pt_model.trainable = False

    # inference on fine-tune model
    outputs_ft = ft_model(frames[None, ...], training=False)
    probabilities = tf.nn.softmax(outputs_ft).numpy().squeeze(0)
    confidences = {
        label_map[i]: float(probabilities[i]) for i in np.argsort(probabilities)[::-1]
    }

    # inference on pre-trained model
    outputs_pt = pt_model(frames[None, ...], bool_masked_pos_tf, training=False)
    reconstruct_output, mask = reconstrunction(
        frames[None, ...], bool_masked_pos_tf, outputs_pt
    )

    # post process
    input_frame = denormalize(frames)
    input_mask = denormalize(mask[0] * frames)
    output_frame = denormalize(reconstruct_output)

    frames = []
    for frame_a, frame_b, frame_c in zip(input_frame, input_mask, output_frame):
        combined_frame = np.hstack([frame_a, frame_b, frame_c])
        frames.append(combined_frame)

    combined_gif = 'combined.gif'
    imageio.mimsave(combined_gif, frames, duration=300, loop=0)
    return confidences, combined_gif


def main():
    datasets = ['K400', 'SSv2', 'UCF']

    ALL_MODELS = [
        'TFVideoMAE_L_K400_16x224',
        'TFVideoMAE_B_SSv2_16x224',
        'TFVideoMAE_B_UCF_16x224',
    ]

    sample_example = [
        ["examples/k400.mp4",  ALL_MODELS[0], 0.9],
        ["examples/ssv2.webm",  ALL_MODELS[1], 0.8],
        ["examples/ucf.mp4",  ALL_MODELS[2], 0.7],
    ]

    iface = gr.Interface(
        fn=inference,
        inputs=[ 
            gr.Video(type="file", label="Input Video"),
            gr.Dropdown(
                choices=ALL_MODELS, 
                value="TFVideoMAE_S_K400_16x224", 
                label="Model"
            ),
            # gr.Radio(
            #     datasets, 
            #     type='value',
            #     default=datasets[0],
            #     label='Dataset', 
            # ),
            gr.Slider(
                0.5,
                1.0,
                step=0.1,
                default=0.5,
                label='Mask Ratio'
            )
        ],
        outputs=[
            gr.Label(num_top_classes=3, label='scores'),
            gr.Image(type="filepath", label='reconstructed')
        ],
        examples=sample_example,
        title="VideoMAE",
        description="Keras reimplementation of <a href='https://github.com/innat/VideoMAE'>VideoMAE</a> is presented here."
    )
    
    iface.launch()

if __name__ == '__main__':
    main()