inkleaves commited on
Commit
aa8e598
·
verified ·
1 Parent(s): 6bd241c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -3
app.py CHANGED
@@ -4,11 +4,28 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer
4
  model = AutoModelForSequenceClassification.from_pretrained("inkleaves/spam_detection_model")
5
  tokenizer = AutoTokenizer.from_pretrained("inkleaves/spam_detection_model")
6
 
7
- def predict(text):
8
  inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
9
  outputs = model(**inputs)
10
  prediction = outputs.logits.argmax(dim=-1).item()
11
  return "Spam" if prediction == 1 else "Not Spam"
12
 
13
- interface = gr.Interface(fn=predict, inputs="text", outputs="text")
14
- interface.launch(share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  model = AutoModelForSequenceClassification.from_pretrained("inkleaves/spam_detection_model")
5
  tokenizer = AutoTokenizer.from_pretrained("inkleaves/spam_detection_model")
6
 
7
+ def predict_spam(text):
8
  inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
9
  outputs = model(**inputs)
10
  prediction = outputs.logits.argmax(dim=-1).item()
11
  return "Spam" if prediction == 1 else "Not Spam"
12
 
13
+ # interface = gr.Interface(fn=predict, inputs="text", outputs="text")
14
+ #interface.launch(share=True)
15
+
16
+ # Create the Gradio interface
17
+ app = gr.Interface(
18
+ fn=predict_spam,
19
+ inputs="text",
20
+ outputs="text",
21
+ live=True,
22
+ title="Spam Detection", # Title of the app
23
+ description="This app classifies text as either Spam or Ham.", # Description of the app
24
+ theme="huggingface" # Optional: use a predefined theme
25
+ )
26
+
27
+ # Add a custom header in larger, bolded text using HTML
28
+ header = gr.HTML("<h1 style='font-size:36px; font-weight:bold;'>Spam Detection App</h1>")
29
+
30
+ # Combine header and interface in a layout
31
+ gr.Blocks().add(header, app).launch(share=True)