File size: 1,527 Bytes
db1cecb ea77cb1 826805f 8477d2b db1cecb f9a5673 db1cecb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
from huggingface_hub import from_pretrained_fastai
import gradio as gr
import numpy as np
from fastai.basics import *
from fastai.vision import models
from fastai.vision.all import *
from fastai.metrics import *
from fastai.data.all import *
from fastai.callback import *
import torchvision.transforms as transforms
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = torch.jit.load("hrnet.pth")
def transform_image(image):
my_transforms = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
image_aux = image
return my_transforms(image_aux).unsqueeze(0).to(device)
# Definimos una función que se encarga de llevar a cabo las predicciones
def predict(img):
image = transforms.Resize((480,640))(img)
tensor = transform_image(image=image)
model.to(device)
with torch.no_grad():
outputs = model(tensor)
outputs = torch.argmax(outputs,1)
mask = np.array(outputs.cpu())
mask[mask==1] = 255
mask[mask==2] = 150
mask[mask==3] = 76
mask[mask==4] = 29
mask=np.reshape(mask,(480,640))
return Image.fromarray(mask.astype('uint8'))
# Creamos la interfaz y la lanzamos.
gr.Interface(fn=predict, inputs=gr.inputs.Image(type='pil'), outputs=gr.outputs.Image(type='numpy'), examples=['color_154.jpg','color_155.jpg']).launch(share=False)
|