Practica2 / app.py
inigo99's picture
Update app.py
36808c9
from huggingface_hub import from_pretrained_fastai
import gradio as gr
from icevision.all import *
# repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
repo_id = "inigo99/kangaroo-detector"
class_map = ClassMap(['kangaroo'])
model = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet18_fpn(pretrained=True),
num_classes=len(class_map))
state_dict = torch.load("fasterRCNNkangaroo.pth")
model.load_state_dict(state_dict)
# Definimos una función que se encarga de llevar a cabo las predicciones
def predict(img):
#img = PILImage.create(img)
infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(384),tfms.A.Normalize()])
pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5)
return pred_dict['img']
# Creamos la interfaz y la lanzamos.
gr.Interface(fn=predict, inputs=gr.inputs.Image(type='filepath'), outputs=gr.outputs.Image(type='pil'), examples=['00001.jpg','00002.jpg']).launch(share=False)