File size: 10,885 Bytes
082af7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3db6fe
 
082af7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3db6fe
082af7e
 
 
 
 
 
 
 
 
 
a3db6fe
082af7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3db6fe
082af7e
 
 
 
 
 
 
 
 
 
 
b582e82
082af7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3db6fe
082af7e
 
 
 
 
 
 
a3db6fe
 
 
59d8bd8
02f3c12
 
 
 
a3db6fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
082af7e
 
 
703ba76
082af7e
 
 
 
 
 
 
 
 
 
 
 
 
 
a3db6fe
082af7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3db6fe
 
 
082af7e
 
 
 
 
a3db6fe
 
 
 
 
 
 
 
 
 
082af7e
a3db6fe
082af7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import streamlit as st
import replicate
import requests
import time
import os
import re
from dotenv import load_dotenv
from io import BytesIO
from PIL import Image
import base64

# ******* For More Info on Flux.1 on Replicate ********
#                                                     *
#      https://replicate.com/black-forest-labs        *
#                                                     *
# *****************************************************

st.set_page_config(layout="wide", page_title="Flux.1.X and SD 3.5 in Streamlit with Replicate!", page_icon=":frame_with_picture:")


# Load environment variables
load_dotenv()

# Global error catch as I'm lazy
try:
    # Initialize session state for prompt history
    if 'prompt_history' not in st.session_state:
        st.session_state.prompt_history = []

    def wait_for_image(url, max_attempts=10, delay=2):
        for attempt in range(max_attempts):
            response = requests.head(url)
            if response.status_code == 200:
                return True
            time.sleep(delay)
        return False

    def display_image(url):
        response = requests.get(url)
        if response.status_code == 200:
            image = Image.open(BytesIO(response.content))
            st.image(image, caption="Generated Image")
            return image
        else:
            st.error(f"Failed to download image. Status code: {response.status_code}")
            return None

    def get_image_download_link(img, filename, text):
        buffered = BytesIO()
        img.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode()
        href = f'<a href="data:file/png;base64,{img_str}" download="{filename}">**{text}**</a>'
        return href

    # Streamlit app
    st.title("Flux.1.X / SD 3.5 Turbo - Streamlit GUI")

    # Create three columns
    left_column, margin_col, right_column = st.columns([6, 1, 5])

    # Left column contents
    with left_column:
        input_prompt = st.text_area("Enter your prompt:", height=100)

        model_version = st.selectbox(
            "Model Version (schnell: fast and cheap, dev: quick and inexpensive, pro: moderate render time, most expensive)",
            options=["schnell", "dev", "pro","1.1-pro", "SD 3.5 Large Turbo", "SD 3.5 Large"],
            index=0
        )
        
        aspect_ratio = st.selectbox(
            "Aspect Ratio",
            options=["1:1", "16:9", "21:9", "2:3", "3:2", "4:5", "5:4", "9:16", "9:21"],
            index=0
        )

        # some default values since different versions of the model require different params
        guidance = None
        steps = None
        safety_checker = None
        interval = None
        safety_tolerance = None
        cfg = None # sd models
        
        if model_version == "dev":
            guidance = st.slider(
                "Guidance - How closely the model follows your prompt, 1-10, default 3.5",
                min_value=0.0,
                max_value=10.0,
                value=3.5,
                step=0.01,
                format="%.2f"
            )
        
        if model_version.startswith("pro") or model_version.startswith("1"):
            guidance = st.slider(
                "Guidance - How closely the model follows your prompt, 2-5, default is 3",
                min_value=2.0,
                max_value=5.0,
                value=3.0,
                step=0.01,
                format="%.2f"
            )
            
            steps = st.slider(
                "Steps - Quality/Detail of render, 1-100, default 25.",
                min_value=1,
                max_value=100,
                value=25,
                step=1
            )    

            interval = st.slider(
                "Interval - Variance of the image, 4 being the most varied, default is 1",
                min_value=1.0,
                max_value=4.0,
                value=1.0,
                step=0.01,
                format="%.2f"
            )  

            safety_tolerance = st.slider(
                "Safety Tolerance - 1 to 5, 5 being least restrictive, 1 default (3 on default on here)",
                min_value=1,
                max_value=5,
                value=3,
                step=1
            )     

            if not model_version.startswith("pro") and not model_version.startswith("1") and not model_version.startswith("SD"):
                safety_checker = "On"
        #     safety_checker = st.radio(
        #         "Safety Checker - Turn on model NSFW checking",
        #         options=["Off", "On"],
        #         index=1,
        #         format_func=lambda x: "Disabled" if x == "On" else "Enabled"
        #     )

        if model_version == "SD 3.5 Large Turbo":
            cfg =  st.slider(
                "CFG - Similarity to prompt, 1-20, default is 1 ",
                min_value=1.00,
                max_value=20.00,
                value=1.00,
                step=.05
            )    
            steps = st.slider(
                "Steps - Quality/Detail of render, 1-10, default 4.",
                min_value=1,
                max_value=10,
                value=4,
                step=1
            )   

        if model_version == "SD 3.5 Large":
            cfg =  st.slider(
                "CFG - Similarity to prompt, 0-20, default is 3.5 ",
                min_value=0.0,
                max_value=20.0,
                value=3.5,
                step=.5
            )    
            steps = st.slider(
                "Steps - Quality/Detail of render, 1-50, default 35.",
                min_value=1,
                max_value=50,
                value=35,
                step=1
            )  
        
        seed = st.number_input("Seed (optional)", min_value=0, max_value=2**32-1, step=1, value=None, key="seed")

        replicate_key = st.text_input("Replicate Key - Required", key="rep_key", type="password")
        if replicate_key is None:
            st.warning("You must provide a replicate auth token key for this to work.")
            st.stop()
        else:
            os.environ["REPLICATE_API_TOKEN"] = replicate_key
        
        col1, col2, col3 = st.columns([2,2,4])
        with col1:
            generate_button = st.button("Generate Image")
            
        if generate_button:
            if replicate_key is None or replicate_key == "":
                st.warning("You must provide a replicate auth token key for this to work.")
                st.stop()
       
            
            if input_prompt:
                st.session_state.prompt_history.insert(0, input_prompt)
                with st.spinner():

                    input_dict = {
                        "prompt": input_prompt,
                        "aspect_ratio": aspect_ratio,
                        "output_format": "png",
                        "output_quality": 100 # output_quality, note this is ignored if output is .png
                       
                    }
               
                    if seed is not None:
                        input_dict["seed"] = seed
                    
                    if guidance is not None:
                        input_dict["guidance"] = guidance
                    
                    if steps is not None:
                        input_dict["steps"] = steps

                    if safety_checker is not None:
                        input_dict["disable_safety_checker"] = safety_checker == "On"
                        
                    if safety_tolerance is not None:    
                        input_dict["safety_tolerance"] = safety_tolerance

                    if cfg is not None:
                         input_dict["cfg"] = cfg

                    # Run the model with the prepared input
                    try:
                        
                        client = replicate.Client(api_token=replicate_key)
                        
                        # refactor if this model list gets any bigger
                        api_end_point = None 
                        
                        if model_version=="SD 3.5 Large Turbo":
                            api_end_point = "stability-ai/stable-diffusion-3.5-large-turbo"
                        elif model_version=="SD 3.5 Large":
                            api_end_point = "stability-ai/stable-diffusion-3.5-large"
                        else:
                            api_end_point = f"black-forest-labs/flux-{model_version}"
                        
                        output = client.run(
                            api_end_point, 
                            input=input_dict
                        )
                        
                        if isinstance(output, list) and len(output) > 0:
                            output = output[0]

                        if not isinstance(output, str):
                            st.error(f"Unexpected output format: {output}")
                        else:
                            with st.spinner('Waiting for image to be ready...'):
                                if wait_for_image(output):
                                    image = display_image(output)
                                    if image:
                                        timestamp = int(time.time())
                                        clean_prompt = re.sub(r'[^a-zA-Z0-9 ]', '', input_prompt)
                                        clean_prompt = clean_prompt.strip()[:30]
                                        clean_prompt = clean_prompt.replace(' ', '_')
                                        filename = f"{timestamp}_{clean_prompt}.png"
                                        
                                        st.markdown(get_image_download_link(image, filename, 'Download Image'), unsafe_allow_html=True)
                                else:
                                    st.error("Timed out waiting for image to be ready.")

                    except Exception as e:
                        st.error(f"Error generating image: {str(e)}")

            else:
                st.warning("Please enter a prompt.")

    # Margin column (empty for spacing)
    with margin_col:
        st.empty()

    # Right column contents
    with right_column:
        st.subheader("Prompt History")
        
        prompt_history_container = st.container()
        
        with prompt_history_container:
            for i, prompt in enumerate(st.session_state.prompt_history):
                st.text(f"{i+1}. {prompt}")
        
        st.markdown("""
            <style>
                .stContainer {
                    max-height: 400px;
                    overflow-y: auto;
                }
            </style>
        """, unsafe_allow_html=True)
except Exception as ex:
    st.error(f"Something errored out {ex}")