Spaces:
Runtime error
Runtime error
File size: 16,246 Bytes
cd13b6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
from collections.abc import Callable
import traceback
from typing import List, Union
from datasets import Dataset
import re
import pickle
import os
from transformers.pipelines.pt_utils import KeyDataset
from transformers import AutoTokenizer
from tqdm.auto import tqdm
URL_REGEX = r"\b(https?://\S+)\b"
EMAIL_REGEX = r"([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)"
TAG_REGEX = r"<[^>]+>"
HANDLE_REGEX = r"[^a-zA-Z](@\w+)"
class Translator:
def __init__(
self,
pipe: Callable,
max_length: int = 500,
batch_size: int = 16,
save_every_step=100,
text_key="text",
save_filename=None,
replace_chinese_puncts=False,
verbose=False,
):
self.pipe = pipe
self.max_length = max_length
self.batch_size = batch_size
self.save_every_step = save_every_step
self.save_filename = save_filename
self.text_key = text_key
self.replace_chinese_puncts = replace_chinese_puncts
self.verbose = verbose
if max_length == None and hasattr(pipe.model.config, "max_length"):
self.max_length = pipe.model.config.max_length
def _is_chinese(self, text: str) -> bool:
return (
re.search(
r"[\u4e00-\u9fff\u3400-\u4dbf\U00020000-\U0002a6df\U0002a700-\U0002ebef\U00030000-\U000323af\ufa0e\ufa0f\ufa11\ufa13\ufa14\ufa1f\ufa21\ufa23\ufa24\ufa27\ufa28\ufa29\u3006\u3007][\ufe00-\ufe0f\U000e0100-\U000e01ef]?",
text,
)
is not None
)
def _split_sentences(self, text: str) -> List[str]:
tokens = self.pipe.tokenizer(text, add_special_tokens=False)
token_size = len(tokens.input_ids)
if len(text) <= self.max_length:
return [text]
delimiter = set()
delimiter.update("。!?;…!?;")
sent_list = []
sent = text
while token_size > self.max_length:
orig_sent_len = token_size
# find the index of delimiter near the max_length
for i in range(token_size - 2, 0, -1):
token = tokens.token_to_chars(0, i)
char = sent[token.start : token.end]
if char in delimiter:
split_char_index = token.end
next_sent = sent[split_char_index:]
if len(next_sent) == 1:
continue
sent_list = [next_sent] + sent_list
sent = sent[0:split_char_index]
break
tokens = self.pipe.tokenizer(sent, add_special_tokens=False)
token_size = len(tokens.input_ids)
# no delimiter found, leave the sentence as it is
if token_size == orig_sent_len:
sent_list = [sent] + sent_list
sent = ""
break
if len(sent) > 0:
sent_list = [sent] + sent_list
return sent_list
def _preprocess(self, text: str) -> (str, str):
# extract entities
tags = re.findall(TAG_REGEX, text)
handles = re.findall(HANDLE_REGEX, text)
urls = re.findall(URL_REGEX, text)
emails = re.findall(EMAIL_REGEX, text)
entities = urls + emails + tags + handles
# TODO: escape entity placeholders
for i, entity in enumerate(entities):
text = text.replace(entity, "eeee[%d]" % i, 1)
lines = text.split("\n")
sentences = []
num_tokens = []
template = text.replace("{", "{{").replace("}", "}}")
chunk_index = 0
for line in lines:
sentence = line.strip()
if len(sentence) > 0 and self._is_chinese(sentence):
chunks = self._split_sentences(sentence)
for chunk in chunks:
sentences.append(chunk)
tokens = self.pipe.tokenizer(chunk, add_special_tokens=False)
num_tokens.append(len(tokens.input_ids))
chunk = chunk.replace("{", "{{").replace("}", "}}")
template = template.replace(chunk, "{%d}" % chunk_index, 1)
chunk_index += 1
return sentences, template, num_tokens, entities
def _postprocess(
self,
template: str,
src_sentences: List[str],
translations: List[str],
entities: List[str],
) -> str:
processed = []
alphanumeric_regex = re.compile(
"([a-zA-Za-zA-Z0-9\d+'\",,(\()\)::;;“”。·\.\??\!!‘’$\[\]<>/]+)"
)
def hash_text(text: List[str]) -> str:
text = "|".join(text)
puncts_map = str.maketrans(",;:()。?!“”‘’", ",;:().?!\"\"''")
text = text.translate(puncts_map)
return text.lower()
for i, p in enumerate(translations):
src_sentence = src_sentences[i]
if self.replace_chinese_puncts:
p = re.sub(",", ",", p) # replace all commas
p = re.sub(";", ";", p) # replace semi-colon
p = re.sub(":", ":", p) # replace colon
p = re.sub("\(", "(", p) # replace round basket
p = re.sub("\)", ")", p) # replace round basket
p = re.sub(r"([\d]),([\d])", r"\1,\2", p)
src_matches = re.findall(alphanumeric_regex, src_sentence)
tgt_matches = re.findall(alphanumeric_regex, p)
# length not match or no match
if (
len(src_matches) != len(tgt_matches)
or len(src_matches) == 0
or len(tgt_matches) == 0
):
processed.append(p)
continue
# normalize full-width to half-width and lower case
src_hashes = hash_text(src_matches)
translated_hashes = hash_text(tgt_matches)
if src_hashes != translated_hashes:
# fix unmatched
for j in range(len(src_matches)):
if src_matches[j] != tgt_matches[j]:
p = p.replace(tgt_matches[j], src_matches[j], 1)
processed.append(p)
output = template.format(*processed)
# replace entities
for i, entity in enumerate(entities):
output = output.replace("eeee[%d]" % i, entity, 1)
# TODO: unescape entity placeholders
# fix repeated punctuations
output = re.sub(r"([「」()『』《》。,:])\1+", r"\1", output)
# fix brackets
if "“" in output:
output = re.sub("“", "「", output)
if "”" in output:
output = re.sub("”", "」", output)
return output
def _save(self, translations):
with open(self.save_filename, "wb") as f:
pickle.dump(translations, f)
def __call__(self, inputs: Union[List[str], Dataset]) -> List[str]:
templates = []
sentences = []
num_tokens = []
sentence_indices = []
outputs = []
translations = []
entities_list = []
resume_from_file = None
if isinstance(inputs, Dataset):
ds = inputs
else:
if isinstance(inputs, str):
inputs = [inputs]
ds = Dataset.from_list([{"text": text} for text in inputs])
for i, text_input in tqdm(
enumerate(ds), total=len(ds), desc="Preprocessing", disable=not self.verbose
):
chunks, template, num_tokens, entities = self._preprocess(
text_input["text"]
)
templates.append(template)
sentence_indices.append([])
entities_list.append(entities)
for j, chunk in enumerate(chunks):
sentences.append(chunk)
sentence_indices[len(sentence_indices) - 1].append(len(sentences) - 1)
num_tokens.append(num_tokens[j])
if self.save_filename:
resume_from_file = (
self.save_filename if os.path.isfile(self.save_filename) else None
)
if resume_from_file != None:
translations = pickle.load(open(resume_from_file, "rb"))
if self.verbose:
print("translated:", len(translations))
print("to translate:", len(sentences) - len(translations))
if resume_from_file != None:
print(
"Resuming from {}({} records)".format(
resume_from_file, len(translations)
)
)
ds = Dataset.from_list(
[{"text": text} for text in sentences[len(translations) :]]
)
max_token_length = max(num_tokens)
if self.verbose:
print("Max Length:", max_token_length)
total_records = len(ds)
if total_records > 0:
step = 0
with tqdm(
disable=not self.verbose, desc="Translating", total=total_records
) as pbar:
for out in self.pipe(
KeyDataset(ds, self.text_key),
batch_size=self.batch_size,
max_length=self.max_length,
):
translations.append(out[0])
# export generate result every n steps
if (
step != 0
and self.save_filename != None
and step % self.save_every_step == 0
):
self._save(translations)
step += 1
pbar.update(1)
if self.save_filename != None and total_records > 0:
self._save(translations)
for i, template in tqdm(
enumerate(templates),
total=len(templates),
desc="Postprocessing",
disable=not self.verbose,
):
try:
src_sentences = [sentences[index] for index in sentence_indices[i]]
tgt_sentences = [
translations[index]["translation_text"]
for index in sentence_indices[i]
]
output = self._postprocess(
template, src_sentences, tgt_sentences, entities_list[i]
)
outputs.append(output)
except Exception as error:
print(error)
print(template)
traceback.print_exc()
# print(template, sentence_indices[i], len(translations))
return outputs
class Object(object):
pass
class FakePipe(object):
def __init__(self, max_length: int = 500):
self.model = Object()
self.model.config = Object()
self.model.config.max_length = max_length
self.tokenizer = AutoTokenizer.from_pretrained(
"indiejoseph/bart-translation-zh-yue"
)
def __call__(self, text: List[str], batch_size: str, max_length: int):
for i in range(len(text)):
sentence = text[i]
# extract entities
tags = re.findall(TAG_REGEX, sentence)
handles = re.findall(HANDLE_REGEX, sentence)
urls = re.findall(URL_REGEX, sentence)
emails = re.findall(EMAIL_REGEX, sentence)
entities = urls + emails + tags + handles
for i, entity in enumerate(entities):
sentence = sentence.replace(entity, "eeee[%d]" % i, 1)
if "123" in sentence:
yield [{"translation_text": sentence.replace("123", "123")}]
continue
if "abc" in sentence:
yield [{"translation_text": sentence.replace("abc", "ABC")}]
continue
if "Acetaminophen" in sentence:
yield [
{
"translation_text": sentence.replace(
"Acetaminophen", "ACEtaminidien"
)
}
]
continue
yield [{"translation_text": sentence}]
if __name__ == "__main__":
fake_pipe = FakePipe(60)
translator = Translator(fake_pipe, max_length=60, batch_size=2, verbose=True)
text1 = "对于编写聊天机器人的脚本,你可以采用不同的方法,包括使用基于规则的系统、自然语言处理(NLP)技术和机器学习模型。下面是一个简单的例子,展示如何使用基于规则的方法来构建一个简单的聊天机器人:"
text2 = """对于编写聊天机器人的脚本,你可以采用不同的方法,包括使用基于规则的系统、自然语言处理(NLP)技术和机器学习模型。下面是一个简单的例子,展示如何使用基于规则的方法来构建一个简单的聊天机器人:
```
# 设置用于匹配输入的关键字,并定义相应的回答数据字典。
keywords = {'你好': '你好!很高兴见到你。',
'再见': '再见!有机会再聊。',
'你叫什么': '我是一个聊天机器人。',
'你是谁': '我是一个基于人工智能技术制作的聊天机器人。'}
# 定义用于处理用户输入的函数。
def chatbot(input_text):
# 遍历关键字数据字典,匹配用户的输入。
for key in keywords:
if key in input_text:
# 如果匹配到了关键字,返回相应的回答。
return keywords[key]
# 如果没有找到匹配的关键字,返回默认回答。
return "对不起,我不知道你在说什么。"
# 运行聊天机器人。
while True:
# 获取用户输入。
user_input = input('用户: ')
# 如果用户输入“再见”,退出程序。
if user_input == '再见':
break
# 处理用户输入,并打印回答。
print('机器人: ' + chatbot(user_input))
```
这是一个非常简单的例子。对于实用的聊天机器人,可能需要使用更复杂的 NLP 技术和机器学习模型,以更好地理解和回答用户的问题。"""
text3 = "布洛芬(Ibuprofen)同撲熱息痛(Acetaminophen)係兩種常見嘅非處方藥,用於緩解疼痛、發燒同關節痛。"
text4 = "123 “abc” def's http://www.google.com [email protected] @abc 網址:http://localhost/abc下載"
text5 = "新力公司董事長盛田昭夫、自民黨國會議員石原慎太郎等人撰寫嘅《日本可以說「不」》、《日本還要說「不」》、《日本堅決說「不」》三本書中話道:「無啦啦挑起戰爭嘅好戰日本人,製造南京大屠殺嘅殘暴嘅日本人,呢d就係人地對日本人嘅兩個誤解,都係‘敲打日本’嘅兩個根由,我地必須採取措施消除佢。」"
outputs = translator([text1, text2, text3, text4, text5])
# for i, line in enumerate(outputs[1].split("\n")):
# input_text = text2.split("\n")[i]
# if line != input_text:
# print(line, text2.split("\n")[i])
assert outputs[0] == text1
assert outputs[1] == text2.replace("“", "「").replace("”", "」")
assert outputs[2] == text3
assert outputs[3] == text4.replace("“", "「").replace("”", "」")
assert outputs[4] == text5
# exception
assert (
len(
translator._split_sentences(
"新力公司董事長盛田昭夫、自民黨國會議員石原慎太郎等人撰寫嘅《日本可以說「不」》、《日本還要說「不」》、《日本堅決說「不」》三本書中話道:「無啦啦挑起戰爭嘅好戰日本人,製造南京大屠殺嘅殘暴嘅日本人,呢d就係人地對日本人嘅兩個誤解,都係‘敲打日本’嘅兩個根由,我地必須採取措施消除佢。」"
)
)
== 1
)
translator = Translator(fake_pipe, max_length=5, batch_size=2, verbose=True)
assert (
len(
translator._split_sentences("====。====。====。====。====。====。====。====。====。")
)
== 9
)
|