File size: 16,230 Bytes
94cfa3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
#!/usr/bin/env python3
import argparse
import contextlib
import gc
import os
import queue
import re
import subprocess
import sys
import threading
import time
import yaml

from fastapi.responses import StreamingResponse
from loguru import logger
from openedai import OpenAIStub, BadRequestError, ServiceUnavailableError
from pydantic import BaseModel
import uvicorn

@contextlib.asynccontextmanager
async def lifespan(app):
    yield
    gc.collect()
    try:
        import torch
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()
    except:
        pass

app = OpenAIStub(lifespan=lifespan)
xtts = None
args = None

def unload_model():
    import torch, gc
    global xtts
    if xtts:
        logger.info("Unloading model")
        xtts.xtts.to('cpu') # this was required to free up GPU memory... 
        del xtts
        xtts = None
        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()

class xtts_wrapper():
    check_interval: int = 1 # too aggressive?

    def __init__(self, model_name, device, model_path=None, unload_timer=None):
        self.model_name = model_name
        self.unload_timer = unload_timer
        self.last_used = time.time()
        self.timer = None
        self.lock = threading.Lock()

        logger.info(f"Loading model {self.model_name} to {device}")

        if model_path is None:
            model_path = ModelManager().download_model(model_name)[0]

        config_path = os.path.join(model_path, 'config.json')
        config = XttsConfig()
        config.load_json(config_path)
        self.xtts = Xtts.init_from_config(config)
        self.xtts.load_checkpoint(config, checkpoint_dir=model_path, use_deepspeed=args.use_deepspeed)  # XXX there are no prebuilt deepspeed wheels??
        self.xtts = self.xtts.to(device=device)
        self.xtts.eval()

        if self.unload_timer:
            logger.info(f"Setting unload timer to {self.unload_timer} seconds")
            self.last_used = time.time()
            self.check_idle()

    def check_idle(self):
        with self.lock:
            if time.time() - self.last_used >= self.unload_timer:
                print("Unloading TTS model due to inactivity")
                unload_model()
            else:
                # Reschedule the check
                self.timer = threading.Timer(self.check_interval, self.check_idle)
                self.timer.daemon = True
                self.timer.start()

    def tts(self, text, language, speaker_wav, **hf_generate_kwargs):
        with torch.no_grad():
            self.last_used = time.time()
            tokens = 0
            try:
                with self.lock:
                    gpt_cond_latent, speaker_embedding = self.xtts.get_conditioning_latents(audio_path=[speaker_wav]) # not worth caching calls, it's < 0.001s after model is loaded
                    pcm_stream = self.xtts.inference_stream(text, language, gpt_cond_latent, speaker_embedding, **hf_generate_kwargs)
                    self.last_used = time.time()

                while True:
                    with self.lock:
                        yield next(pcm_stream).cpu().numpy().tobytes()
                        self.last_used = time.time()
                    tokens += 1

            except StopIteration:
                pass

            finally:
                logger.debug(f"Generated {tokens} tokens in {time.time() - self.last_used:.2f}s @ {tokens / (time.time() - self.last_used):.2f} T/s")
                self.last_used = time.time()

def default_exists(filename: str):
    if not os.path.exists(filename):
        fpath, ext = os.path.splitext(filename)
        basename = os.path.basename(fpath)
        default = f"{basename}.default{ext}"
        
        logger.info(f"{filename} does not exist, setting defaults from {default}")

        with open(default, 'r', encoding='utf8') as from_file:
            with open(filename, 'w', encoding='utf8') as to_file:
                to_file.write(from_file.read())

# Read pre process map on demand so it can be changed without restarting the server
def preprocess(raw_input):
    #logger.debug(f"preprocess: before: {[raw_input]}")
    default_exists('config/pre_process_map.yaml')
    with open('config/pre_process_map.yaml', 'r', encoding='utf8') as file:
        pre_process_map = yaml.safe_load(file)
        for a, b in pre_process_map:
            raw_input = re.sub(a, b, raw_input)
    
    raw_input = raw_input.strip()
    #logger.debug(f"preprocess: after: {[raw_input]}")
    return raw_input

# Read voice map on demand so it can be changed without restarting the server
def map_voice_to_speaker(voice: str, model: str):
    default_exists('config/voice_to_speaker.yaml')
    with open('config/voice_to_speaker.yaml', 'r', encoding='utf8') as file:
        voice_map = yaml.safe_load(file)
        try:
            return voice_map[model][voice]

        except KeyError as e:
            raise BadRequestError(f"Error loading voice: {voice}, KeyError: {e}", param='voice')

class GenerateSpeechRequest(BaseModel):
    model: str = "tts-1" # or "tts-1-hd"
    input: str
    voice: str = "alloy"  # alloy, echo, fable, onyx, nova, and shimmer
    response_format: str = "mp3" # mp3, opus, aac, flac
    speed: float = 1.0 # 0.25 - 4.0

def build_ffmpeg_args(response_format, input_format, sample_rate):
    # Convert the output to the desired format using ffmpeg
    if input_format == 'WAV':
        ffmpeg_args = ["ffmpeg", "-loglevel", "error", "-f", "WAV", "-i", "-"]
    else:
        ffmpeg_args = ["ffmpeg", "-loglevel", "error", "-f", input_format, "-ar", sample_rate, "-ac", "1", "-i", "-"]
    
    if response_format == "mp3":
        ffmpeg_args.extend(["-f", "mp3", "-c:a", "libmp3lame", "-ab", "64k"])
    elif response_format == "opus":
        ffmpeg_args.extend(["-f", "ogg", "-c:a", "libopus"])
    elif response_format == "aac":
        ffmpeg_args.extend(["-f", "adts", "-c:a", "aac", "-ab", "64k"])
    elif response_format == "flac":
        ffmpeg_args.extend(["-f", "flac", "-c:a", "flac"])
    elif response_format == "wav":
        ffmpeg_args.extend(["-f", "wav", "-c:a", "pcm_s16le"])
    elif response_format == "pcm": # even though pcm is technically 'raw', we still use ffmpeg to adjust the speed
        ffmpeg_args.extend(["-f", "s16le", "-c:a", "pcm_s16le"])

    return ffmpeg_args

@app.post("/v1/audio/speech", response_class=StreamingResponse)
async def generate_speech(request: GenerateSpeechRequest):
    global xtts, args
    if len(request.input) < 1:
        raise BadRequestError("Empty Input", param='input')

    input_text = preprocess(request.input)

    if len(input_text) < 1:
        raise BadRequestError("Input text empty after preprocess.", param='input')

    model = request.model
    voice = request.voice
    response_format = request.response_format.lower()
    speed = request.speed

    # Set the Content-Type header based on the requested format
    if response_format == "mp3":
        media_type = "audio/mpeg"
    elif response_format == "opus":
        media_type = "audio/ogg;codec=opus" # codecs?
    elif response_format == "aac":
        media_type = "audio/aac"
    elif response_format == "flac":
        media_type = "audio/x-flac"
    elif response_format == "wav":
        media_type = "audio/wav"
    elif response_format == "pcm":
        if model == 'tts-1': # piper
            media_type = "audio/pcm;rate=22050"
        elif model == 'tts-1-hd': # xtts
            media_type = "audio/pcm;rate=24000"
    else:
        raise BadRequestError(f"Invalid response_format: '{response_format}'", param='response_format')

    ffmpeg_args = None

    # Use piper for tts-1, and if xtts_device == none use for all models.
    if model == 'tts-1' or args.xtts_device == 'none':
        voice_map = map_voice_to_speaker(voice, 'tts-1')
        try:
            piper_model = voice_map['model']

        except KeyError as e:
            raise ServiceUnavailableError(f"Configuration error: tts-1 voice '{voice}' is missing 'model:' setting. KeyError: {e}")

        speaker = voice_map.get('speaker', None)

        tts_args = ["piper", "--model", str(piper_model), "--data-dir", "voices", "--download-dir", "voices", "--output-raw"]
        if speaker:
            tts_args.extend(["--speaker", str(speaker)])
        if speed != 1.0:
            tts_args.extend(["--length-scale", f"{1.0/speed}"])

        tts_proc = subprocess.Popen(tts_args, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
        tts_proc.stdin.write(bytearray(input_text.encode('utf-8')))
        tts_proc.stdin.close()

        ffmpeg_args = build_ffmpeg_args(response_format, input_format="s16le", sample_rate="22050")

        # Pipe the output from piper/xtts to the input of ffmpeg
        ffmpeg_args.extend(["-"])
        ffmpeg_proc = subprocess.Popen(ffmpeg_args, stdin=tts_proc.stdout, stdout=subprocess.PIPE)

        return StreamingResponse(content=ffmpeg_proc.stdout, media_type=media_type)
    # Use xtts for tts-1-hd
    elif model == 'tts-1-hd':
        voice_map = map_voice_to_speaker(voice, 'tts-1-hd')
        try:
            tts_model = voice_map.pop('model')
            speaker = voice_map.pop('speaker')

        except KeyError as e:
            raise ServiceUnavailableError(f"Configuration error: tts-1-hd voice '{voice}' is missing setting. KeyError: {e}")

        if xtts and xtts.model_name != tts_model:
            unload_model()

        tts_model_path = voice_map.pop('model_path', None) # XXX changing this on the fly is ignored if you keep the same name

        if xtts is None:
            xtts = xtts_wrapper(tts_model, device=args.xtts_device, model_path=tts_model_path, unload_timer=args.unload_timer)

        ffmpeg_args = build_ffmpeg_args(response_format, input_format="f32le", sample_rate="24000")

        # tts speed doesn't seem to work well
        speed = voice_map.pop('speed', speed)
        if speed < 0.5:
            speed = speed / 0.5
            ffmpeg_args.extend(["-af", "atempo=0.5"]) 
        if speed > 1.0:
            ffmpeg_args.extend(["-af", f"atempo={speed}"]) 
            speed = 1.0

        # Pipe the output from piper/xtts to the input of ffmpeg
        ffmpeg_args.extend(["-"])

        language = voice_map.pop('language', 'auto')
        if language == 'auto':
            try:
                language = detect(input_text)
                if language not in [
                    'en', 'es', 'fr', 'de', 'it', 'pt', 'pl', 'tr',
                    'ru', 'nl', 'cs', 'ar', 'zh-cn', 'hu', 'ko', 'ja', 'hi'
                ]:
                    logger.debug(f"Detected language {language} not supported, defaulting to en")
                    language = 'en'
                else:
                    logger.debug(f"Detected language: {language}")
            except:
                language = 'en'
                logger.debug(f"Failed to detect language, defaulting to en")

        comment = voice_map.pop('comment', None) # ignored.

        hf_generate_kwargs = dict(
            speed=speed,
            **voice_map,
        )

        hf_generate_kwargs['enable_text_splitting'] = hf_generate_kwargs.get('enable_text_splitting', True) # change the default to true

        if hf_generate_kwargs['enable_text_splitting']:
            if language == 'zh-cn':
                split_lang = 'zh'
            else:
                split_lang = language
            all_text = split_sentence(input_text, split_lang, xtts.xtts.tokenizer.char_limits[split_lang])
        else:
            all_text = [input_text]

        ffmpeg_proc = subprocess.Popen(ffmpeg_args, stdin=subprocess.PIPE, stdout=subprocess.PIPE)

        in_q = queue.Queue() # speech pcm 
        ex_q = queue.Queue() # exceptions

        def exception_check(exq: queue.Queue):
            try:
                e = exq.get_nowait()
            except queue.Empty:
                return
            
            raise e

        def generator():
            # text -> in_q
            try:
                for text in all_text:
                    for chunk in xtts.tts(text=text, language=language, speaker_wav=speaker, **hf_generate_kwargs):
                        exception_check(ex_q)
                        in_q.put(chunk)

            except BrokenPipeError as e: # client disconnect lands here
                logger.info("Client disconnected - 'Broken pipe'")

            except Exception as e:
                logger.error(f"Exception: {repr(e)}")
                raise e
        
            finally:
                in_q.put(None) # sentinel

        def out_writer(): 
            # in_q -> ffmpeg
            try:
                while True:
                    chunk = in_q.get()
                    if chunk is None: # sentinel
                        break
                    ffmpeg_proc.stdin.write(chunk) # BrokenPipeError from here on client disconnect

            except Exception as e: # BrokenPipeError
                ex_q.put(e)  # we need to get this exception into the generation loop
                ffmpeg_proc.kill()
                return
            
            finally:
                ffmpeg_proc.stdin.close()

        generator_worker = threading.Thread(target=generator, daemon=True)
        generator_worker.start()

        out_writer_worker = threading.Thread(target=out_writer, daemon=True)
        out_writer_worker.start()

        def cleanup():
            ffmpeg_proc.kill()
            del generator_worker
            del out_writer_worker

        return StreamingResponse(content=ffmpeg_proc.stdout, media_type=media_type, background=cleanup)
    else:
        raise BadRequestError("No such model, must be tts-1 or tts-1-hd.", param='model')


# We return 'mps' but currently XTTS will not work with mps devices as the cuda support is incomplete
def auto_torch_device():
    try:
        import torch
        return 'cuda' if torch.cuda.is_available() else 'mps' if ( torch.backends.mps.is_available() and torch.backends.mps.is_built() ) else 'cpu'
    
    except:
        return 'none'

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description='OpenedAI Speech API Server',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument('--xtts_device', action='store', default=auto_torch_device(), help="Set the device for the xtts model. The special value of 'none' will use piper for all models.")
    parser.add_argument('--preload', action='store', default=None, help="Preload a model (Ex. 'xtts' or 'xtts_v2.0.2'). By default it's loaded on first use.")
    parser.add_argument('--unload-timer', action='store', default=None, type=int, help="Idle unload timer for the XTTS model in seconds, Ex. 900 for 15 minutes")
    parser.add_argument('--use-deepspeed', action='store_true', default=False, help="Use deepspeed with xtts (this option is unsupported)")
    parser.add_argument('--no-cache-speaker', action='store_true', default=False, help="Don't use the speaker wav embeddings cache")
    parser.add_argument('-P', '--port', action='store', default=8000, type=int, help="Server tcp port")
    parser.add_argument('-H', '--host', action='store', default='0.0.0.0', help="Host to listen on, Ex. 0.0.0.0")
    parser.add_argument('-L', '--log-level', default="INFO", choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], help="Set the log level")

    args = parser.parse_args()

    default_exists('config/pre_process_map.yaml')
    default_exists('config/voice_to_speaker.yaml')

    logger.remove()
    logger.add(sink=sys.stderr, level=args.log_level)

    if args.xtts_device != "none":
        import torch
        from TTS.tts.configs.xtts_config import XttsConfig
        from TTS.tts.models.xtts import Xtts
        from TTS.utils.manage import ModelManager
        from TTS.tts.layers.xtts.tokenizer import split_sentence
        from langdetect import detect

    if args.preload:
        xtts = xtts_wrapper(args.preload, device=args.xtts_device, unload_timer=args.unload_timer)

    app.register_model('tts-1')
    app.register_model('tts-1-hd')

    uvicorn.run(app, host=args.host, port=args.port)