Spaces:
Runtime error
Runtime error
immelstorun
commited on
Commit
·
78fbf94
1
Parent(s):
f6b1cab
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,28 @@
|
|
1 |
from speechbrain.pretrained.interfaces import foreign_class
|
2 |
-
import gradio as gr
|
3 |
|
4 |
import warnings
|
5 |
warnings.filterwarnings("ignore")
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Loading the speechbrain emotion detection model
|
8 |
learner = foreign_class(
|
9 |
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
|
10 |
-
pymodule_file="custom_interface.py",
|
11 |
classname="CustomEncoderWav2vec2Classifier"
|
12 |
)
|
13 |
|
14 |
# Building prediction function for gradio
|
15 |
emotion_dict = {
|
16 |
-
'sad': 'Sad',
|
17 |
'hap': 'Happy',
|
18 |
'ang': 'Anger',
|
19 |
'fea': 'Fear',
|
@@ -21,13 +30,33 @@ emotion_dict = {
|
|
21 |
'neu': 'Neutral'
|
22 |
}
|
23 |
|
24 |
-
def predict_emotion(
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
# Loading gradio interface
|
29 |
-
inputs = gr.inputs.Audio(label="Input Audio", type="file")
|
30 |
-
outputs = "text"
|
31 |
title = "ML Speech Emotion Detection"
|
32 |
-
description = "
|
33 |
-
|
|
|
|
1 |
from speechbrain.pretrained.interfaces import foreign_class
|
|
|
2 |
|
3 |
import warnings
|
4 |
warnings.filterwarnings("ignore")
|
5 |
|
6 |
+
import os
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
# Путь к каталогу с предзаписанными аудиофайлами
|
10 |
+
prerecorded_audio_path = 'prerecorded'
|
11 |
+
# Список файлов в каталоге prerecorded
|
12 |
+
prerecorded_audio_files = os.listdir(prerecorded_audio_path)
|
13 |
+
# Полные пути к файлам для Dropdown
|
14 |
+
prerecorded_audio_files_full_path = [os.path.join(prerecorded_audio_path, file) for file in prerecorded_audio_files]
|
15 |
+
|
16 |
# Loading the speechbrain emotion detection model
|
17 |
learner = foreign_class(
|
18 |
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
|
19 |
+
pymodule_file="custom_interface.py",
|
20 |
classname="CustomEncoderWav2vec2Classifier"
|
21 |
)
|
22 |
|
23 |
# Building prediction function for gradio
|
24 |
emotion_dict = {
|
25 |
+
'sad': 'Sad',
|
26 |
'hap': 'Happy',
|
27 |
'ang': 'Anger',
|
28 |
'fea': 'Fear',
|
|
|
30 |
'neu': 'Neutral'
|
31 |
}
|
32 |
|
33 |
+
def predict_emotion(uploaded_audio=None, prerecorded_audio=None):
|
34 |
+
# Если выбран аудиофайл из выпадающего списка, использовать его
|
35 |
+
if prerecorded_audio is not None:
|
36 |
+
audio_file_path = prerecorded_audio
|
37 |
+
elif uploaded_audio is not None:
|
38 |
+
# Иначе, если загружен файл, использовать его
|
39 |
+
audio_file_path = uploaded_audio.name
|
40 |
+
else:
|
41 |
+
# Если нет файла, вернуть сообщение об ошибке
|
42 |
+
return "No audio file provided", 0
|
43 |
+
|
44 |
+
out_prob, score, index, text_lab = learner.classify_file(audio_file_path)
|
45 |
+
emotion_probability = out_prob[0][index[0]].item()
|
46 |
+
|
47 |
+
# Возвращаем словарь с эмоцией и вероятностью
|
48 |
+
return {"Emotion": emotion_dict[text_lab[0]], "Probability": f"{emotion_probability:.2f}"}
|
49 |
+
|
50 |
+
# Модифицированный Gradio interface
|
51 |
+
inputs = [
|
52 |
+
gr.inputs.Dropdown(list(prerecorded_audio_files_full_path), label="Select Prerecorded Audio", default=None),
|
53 |
+
gr.inputs.Audio(label="Or Upload Audio", type="file", source="upload", optional=True),
|
54 |
+
gr.inputs.Audio(label="Or Record Audio", type="file", source="microphone", optional=True)
|
55 |
+
]
|
56 |
+
|
57 |
+
outputs = gr.outputs.Label(num_top_classes=2)
|
58 |
|
|
|
|
|
|
|
59 |
title = "ML Speech Emotion Detection"
|
60 |
+
description = "Detect emotions from speech using a Speechbrain powered model."
|
61 |
+
|
62 |
+
gr.Interface(fn=predict_emotion, inputs=inputs, outputs=outputs, title=title, description=description).launch()
|