|
import torch |
|
from typing import List, Union, Optional, Dict, Any, Callable |
|
from diffusers.models.attention_processor import Attention, F |
|
from .lora_controller import enable_lora |
|
|
|
|
|
def attn_forward( |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor = None, |
|
condition_latents: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
image_rotary_emb: Optional[torch.Tensor] = None, |
|
cond_rotary_emb: Optional[torch.Tensor] = None, |
|
model_config: Optional[Dict[str, Any]] = {}, |
|
) -> torch.FloatTensor: |
|
batch_size, _, _ = ( |
|
hidden_states.shape |
|
if encoder_hidden_states is None |
|
else encoder_hidden_states.shape |
|
) |
|
|
|
with enable_lora( |
|
(attn.to_q, attn.to_k, attn.to_v), model_config.get("latent_lora", False) |
|
): |
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
|
|
if encoder_hidden_states is not None: |
|
|
|
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) |
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
|
|
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
|
|
if attn.norm_added_q is not None: |
|
encoder_hidden_states_query_proj = attn.norm_added_q( |
|
encoder_hidden_states_query_proj |
|
) |
|
if attn.norm_added_k is not None: |
|
encoder_hidden_states_key_proj = attn.norm_added_k( |
|
encoder_hidden_states_key_proj |
|
) |
|
|
|
|
|
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) |
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) |
|
|
|
if image_rotary_emb is not None: |
|
from diffusers.models.embeddings import apply_rotary_emb |
|
|
|
query = apply_rotary_emb(query, image_rotary_emb) |
|
key = apply_rotary_emb(key, image_rotary_emb) |
|
|
|
if condition_latents is not None: |
|
cond_query = attn.to_q(condition_latents) |
|
cond_key = attn.to_k(condition_latents) |
|
cond_value = attn.to_v(condition_latents) |
|
|
|
cond_query = cond_query.view(batch_size, -1, attn.heads, head_dim).transpose( |
|
1, 2 |
|
) |
|
cond_key = cond_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
cond_value = cond_value.view(batch_size, -1, attn.heads, head_dim).transpose( |
|
1, 2 |
|
) |
|
if attn.norm_q is not None: |
|
cond_query = attn.norm_q(cond_query) |
|
if attn.norm_k is not None: |
|
cond_key = attn.norm_k(cond_key) |
|
|
|
if cond_rotary_emb is not None: |
|
cond_query = apply_rotary_emb(cond_query, cond_rotary_emb) |
|
cond_key = apply_rotary_emb(cond_key, cond_rotary_emb) |
|
|
|
if condition_latents is not None: |
|
query = torch.cat([query, cond_query], dim=2) |
|
key = torch.cat([key, cond_key], dim=2) |
|
value = torch.cat([value, cond_value], dim=2) |
|
|
|
if not model_config.get("union_cond_attn", True): |
|
|
|
|
|
attention_mask = torch.ones( |
|
query.shape[2], key.shape[2], device=query.device, dtype=torch.bool |
|
) |
|
condition_n = cond_query.shape[2] |
|
attention_mask[-condition_n:, :-condition_n] = False |
|
attention_mask[:-condition_n, -condition_n:] = False |
|
if hasattr(attn, "c_factor"): |
|
attention_mask = torch.zeros( |
|
query.shape[2], key.shape[2], device=query.device, dtype=query.dtype |
|
) |
|
condition_n = cond_query.shape[2] |
|
bias = torch.log(attn.c_factor[0]) |
|
attention_mask[-condition_n:, :-condition_n] = bias |
|
attention_mask[:-condition_n, -condition_n:] = bias |
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask |
|
) |
|
hidden_states = hidden_states.transpose(1, 2).reshape( |
|
batch_size, -1, attn.heads * head_dim |
|
) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
if encoder_hidden_states is not None: |
|
if condition_latents is not None: |
|
encoder_hidden_states, hidden_states, condition_latents = ( |
|
hidden_states[:, : encoder_hidden_states.shape[1]], |
|
hidden_states[ |
|
:, encoder_hidden_states.shape[1] : -condition_latents.shape[1] |
|
], |
|
hidden_states[:, -condition_latents.shape[1] :], |
|
) |
|
else: |
|
encoder_hidden_states, hidden_states = ( |
|
hidden_states[:, : encoder_hidden_states.shape[1]], |
|
hidden_states[:, encoder_hidden_states.shape[1] :], |
|
) |
|
|
|
with enable_lora((attn.to_out[0],), model_config.get("latent_lora", False)): |
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) |
|
|
|
if condition_latents is not None: |
|
condition_latents = attn.to_out[0](condition_latents) |
|
condition_latents = attn.to_out[1](condition_latents) |
|
|
|
return ( |
|
(hidden_states, encoder_hidden_states, condition_latents) |
|
if condition_latents is not None |
|
else (hidden_states, encoder_hidden_states) |
|
) |
|
elif condition_latents is not None: |
|
|
|
hidden_states, condition_latents = ( |
|
hidden_states[:, : -condition_latents.shape[1]], |
|
hidden_states[:, -condition_latents.shape[1] :], |
|
) |
|
return hidden_states, condition_latents |
|
else: |
|
return hidden_states |
|
|
|
|
|
def block_forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor, |
|
condition_latents: torch.FloatTensor, |
|
temb: torch.FloatTensor, |
|
cond_temb: torch.FloatTensor, |
|
cond_rotary_emb=None, |
|
image_rotary_emb=None, |
|
model_config: Optional[Dict[str, Any]] = {}, |
|
): |
|
use_cond = condition_latents is not None |
|
with enable_lora((self.norm1.linear,), model_config.get("latent_lora", False)): |
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( |
|
hidden_states, emb=temb |
|
) |
|
|
|
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = ( |
|
self.norm1_context(encoder_hidden_states, emb=temb) |
|
) |
|
|
|
if use_cond: |
|
( |
|
norm_condition_latents, |
|
cond_gate_msa, |
|
cond_shift_mlp, |
|
cond_scale_mlp, |
|
cond_gate_mlp, |
|
) = self.norm1(condition_latents, emb=cond_temb) |
|
|
|
|
|
result = attn_forward( |
|
self.attn, |
|
model_config=model_config, |
|
hidden_states=norm_hidden_states, |
|
encoder_hidden_states=norm_encoder_hidden_states, |
|
condition_latents=norm_condition_latents if use_cond else None, |
|
image_rotary_emb=image_rotary_emb, |
|
cond_rotary_emb=cond_rotary_emb if use_cond else None, |
|
) |
|
attn_output, context_attn_output = result[:2] |
|
cond_attn_output = result[2] if use_cond else None |
|
|
|
|
|
|
|
attn_output = gate_msa.unsqueeze(1) * attn_output |
|
hidden_states = hidden_states + attn_output |
|
|
|
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output |
|
encoder_hidden_states = encoder_hidden_states + context_attn_output |
|
|
|
if use_cond: |
|
cond_attn_output = cond_gate_msa.unsqueeze(1) * cond_attn_output |
|
condition_latents = condition_latents + cond_attn_output |
|
if model_config.get("add_cond_attn", False): |
|
hidden_states += cond_attn_output |
|
|
|
|
|
|
|
norm_hidden_states = self.norm2(hidden_states) |
|
norm_hidden_states = ( |
|
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] |
|
) |
|
|
|
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) |
|
norm_encoder_hidden_states = ( |
|
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] |
|
) |
|
|
|
if use_cond: |
|
norm_condition_latents = self.norm2(condition_latents) |
|
norm_condition_latents = ( |
|
norm_condition_latents * (1 + cond_scale_mlp[:, None]) |
|
+ cond_shift_mlp[:, None] |
|
) |
|
|
|
|
|
with enable_lora((self.ff.net[2],), model_config.get("latent_lora", False)): |
|
|
|
ff_output = self.ff(norm_hidden_states) |
|
ff_output = gate_mlp.unsqueeze(1) * ff_output |
|
|
|
context_ff_output = self.ff_context(norm_encoder_hidden_states) |
|
context_ff_output = c_gate_mlp.unsqueeze(1) * context_ff_output |
|
|
|
if use_cond: |
|
cond_ff_output = self.ff(norm_condition_latents) |
|
cond_ff_output = cond_gate_mlp.unsqueeze(1) * cond_ff_output |
|
|
|
|
|
hidden_states = hidden_states + ff_output |
|
encoder_hidden_states = encoder_hidden_states + context_ff_output |
|
if use_cond: |
|
condition_latents = condition_latents + cond_ff_output |
|
|
|
|
|
if encoder_hidden_states.dtype == torch.float16: |
|
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) |
|
|
|
return encoder_hidden_states, hidden_states, condition_latents if use_cond else None |
|
|
|
|
|
def single_block_forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: torch.FloatTensor, |
|
image_rotary_emb=None, |
|
condition_latents: torch.FloatTensor = None, |
|
cond_temb: torch.FloatTensor = None, |
|
cond_rotary_emb=None, |
|
model_config: Optional[Dict[str, Any]] = {}, |
|
): |
|
|
|
using_cond = condition_latents is not None |
|
residual = hidden_states |
|
with enable_lora( |
|
( |
|
self.norm.linear, |
|
self.proj_mlp, |
|
), |
|
model_config.get("latent_lora", False), |
|
): |
|
norm_hidden_states, gate = self.norm(hidden_states, emb=temb) |
|
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) |
|
if using_cond: |
|
residual_cond = condition_latents |
|
norm_condition_latents, cond_gate = self.norm(condition_latents, emb=cond_temb) |
|
mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_condition_latents)) |
|
|
|
attn_output = attn_forward( |
|
self.attn, |
|
model_config=model_config, |
|
hidden_states=norm_hidden_states, |
|
image_rotary_emb=image_rotary_emb, |
|
**( |
|
{ |
|
"condition_latents": norm_condition_latents, |
|
"cond_rotary_emb": cond_rotary_emb if using_cond else None, |
|
} |
|
if using_cond |
|
else {} |
|
), |
|
) |
|
if using_cond: |
|
attn_output, cond_attn_output = attn_output |
|
|
|
with enable_lora((self.proj_out,), model_config.get("latent_lora", False)): |
|
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) |
|
gate = gate.unsqueeze(1) |
|
hidden_states = gate * self.proj_out(hidden_states) |
|
hidden_states = residual + hidden_states |
|
if using_cond: |
|
condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2) |
|
cond_gate = cond_gate.unsqueeze(1) |
|
condition_latents = cond_gate * self.proj_out(condition_latents) |
|
condition_latents = residual_cond + condition_latents |
|
|
|
if hidden_states.dtype == torch.float16: |
|
hidden_states = hidden_states.clip(-65504, 65504) |
|
|
|
return hidden_states if not using_cond else (hidden_states, condition_latents) |
|
|