|
import streamlit as st |
|
import transformers |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
from predict_function import detect_fake_news |
|
|
|
|
|
model_name = AutoModelForSequenceClassification.from_pretrained("ikoghoemmanuell/finetuned_fake_news_roberta") |
|
tokenizer_name = AutoTokenizer.from_pretrained("ikoghoemmanuell/finetuned_fake_news_roberta") |
|
|
|
|
|
|
|
gif_url = "https://raw.githubusercontent.com/Gilbert-B/Forecasting-Sales/main/app/salesgif.gif" |
|
"https://docs.gato.txst.edu/78660/w/2000/a_1dzGZrL3bG/fake-fact.jpg" |
|
|
|
|
|
st.sidebar.header('Navigation') |
|
menu = ['Home', 'About'] |
|
choice = st.sidebar.selectbox("Select an option", menu) |
|
|
|
|
|
@st.cache_resource |
|
def detect_fake_news(text): |
|
|
|
pipeline = transformers.pipeline("text-classification", model=model_name, tokenizer=tokenizer_name) |
|
|
|
|
|
prediction = pipeline(text) |
|
sentiment = prediction[0]["label"] |
|
score = prediction[0]["score"] |
|
|
|
return sentiment, score |
|
|
|
|
|
|
|
text = st.text_input("Enter some text here:") |
|
|
|
|
|
|
|
|
|
if choice == 'Home': |
|
st.image(gif_url, |
|
use_column_width=True, |
|
width=400) |
|
st.markdown("<h1 style='text-align: center;'>Welcome</h1>", unsafe_allow_html=True) |
|
st.markdown("<p style='text-align: center;'>This is a Fake News Detection App.</p>", unsafe_allow_html=True) |
|
|
|
|
|
st.title('TRUTH- A fake news detection app') |
|
st.markdown("Enter some text and we'll tell you if it's likely to be fake news or not!") |
|
|
|
|
|
if st.button('Predict'): |
|
|
|
if text: |
|
with st.spinner('Checking if news is Fake...'): |
|
label, score = detect_fake_news(text) |
|
print(label, score) |
|
if label == "LABEL_1": |
|
st.error(f"The text is likely to be fake news with a confidence score of {score*100:.2f}%!") |
|
else: |
|
st.success(f"The text is likely to be genuine with a confidence score of {score*100:.2f}%!") |
|
else: |
|
with st.spinner('Checking if news is Fake...'): |
|
sales_data = pd.DataFrame({}) |
|
try: |
|
st.success(f"") |
|
except ValueError as e: |
|
st.error(str(e)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.set_page_config(page_title="Fake News Detection App", page_icon="fas fa-exclamation-triangle", layout="wide", initial_sidebar_state="auto") |
|
|
|
|
|
st.markdown( |
|
""" |
|
<style> |
|
body { |
|
background-color: #f5f5f5; |
|
} |
|
h1 { |
|
color: #4e79a7; |
|
} |
|
</style> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
elif choice == 'About': |
|
|
|
banner_image_url = "https://raw.githubusercontent.com/Gilbert-B/Forecasting-Sales/0d7b869515bniVmJZZxhyQ8Fee6m6SCLi64M8Ba72c/app/seer.png" |
|
banner_image = Image.open(requests.get(banner_image_url, stream=True).raw) |
|
|
|
|
|
st.image(banner_image, use_column_width=True) |
|
st.markdown(''' |
|
<p style='font-size: 20px; font-style: italic;font-style: bold;'> |
|
TRUTH is a cutting-edge application specifically designed to combat the spread of fake news. |
|
Using state-of-the-art algorithms and advanced deep learning techniques, |
|
our app empowers users to detect and verify the authenticity of news articles. |
|
TRUTH provides accurate assessments of the reliability of news content. |
|
With its user-friendly interface and intuitive design, |
|
the app enables users to easily navigate and obtain trustworthy information in real-time. |
|
With TRUTH, you can take control of the news you consume and make informed decisions based on verified facts. |
|
</p> |
|
''', unsafe_allow_html=True) |
|
|