|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import pandas as pd |
|
|
|
|
|
model_name = "jrocha/tiny_llama" |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
df = pd.read_csv('splitted_df_jo.csv') |
|
|
|
|
|
def prepare_context(): |
|
pubmed_information_column = df['section_text'] |
|
pubmed_information_cleaned = "" |
|
for text in pubmed_information_column.tolist(): |
|
objective_index = text.find("Objective") |
|
if objective_index != -1: |
|
cleaned_text = text[:objective_index] |
|
pubmed_information_cleaned += cleaned_text |
|
else: |
|
pubmed_information_cleaned += text |
|
max_length = 1000 |
|
return pubmed_information_cleaned[:max_length] |
|
|
|
|
|
def answer_question(question): |
|
pubmed_information_cleaned = prepare_context() |
|
|
|
|
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "You are a friendly chatbot who responds to questions about cancer. Please be considerate.", |
|
}, |
|
{"role": "user", "content": question}, |
|
] |
|
prompt_with_pubmed = f"{pubmed_information_cleaned}\n\n" |
|
prompt_with_pubmed += tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False) |
|
|
|
|
|
input_ids = tokenizer.encode(prompt_with_pubmed, return_tensors='pt') |
|
output = model.generate(input_ids, max_length=600, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
|
|
|
|
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
position_assistant = generated_text.find("<|assistant|>") + len("<|assistant|>") |
|
return generated_text[position_assistant:] |
|
|
|
def main(): |
|
"""" |
|
Initializes a Women Cancer ChatBot interface using Hugging Face models for question answering. |
|
|
|
This function loads a pretrained tokenizer and model from the Hugging Face model hub |
|
and creates a Gradio interface for the ChatBot. Users can input questions related to |
|
women's cancer topics, and the ChatBot will generate answers based on the provided context. |
|
|
|
Returns: |
|
None |
|
Example: |
|
>>> main() |
|
""" |
|
iface = gr.Interface(fn=answer_question, |
|
inputs=["text"], |
|
outputs=[gr.Textbox(label="Answer")], |
|
title="Women Cancer ChatBot", |
|
description="How can I help you?", |
|
examples=[ |
|
["What is breast cancer?"], |
|
["What are treatments for cervical cancer?"] |
|
]) |
|
|
|
return iface.launch(debug = True, share=True) |
|
|
|
main() |