hannahisrael03 commited on
Commit
bd9abb2
verified
1 Parent(s): 94b6be6

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +76 -0
  2. model_functions.py +102 -0
  3. preprocessor.py +94 -0
  4. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from model_functions import *
2
+ from preprocessor import *
3
+ import streamlit as st
4
+ import pandas as pd
5
+
6
+
7
+
8
+ def main():
9
+ st.title("WhatsApp Analysis Tool")
10
+ st.markdown("This app summarizes Whatsapp chats and provides named entity recognition as well as sentiment analysis for the conversation")
11
+ st.markdown("**NOTE**: *This app can only receive chats downloaded from IOS as the downloaded chat format is different than from Android.*")
12
+ st.markdown("Download your whatsapp chat by going to Settings > Chats > Export Chat and there select the chat you want to summarize (download 'Without Media').")
13
+
14
+
15
+ # File uploader
16
+ uploaded_file = st.file_uploader("Choose a file (.zip)", type=['zip'])
17
+ if uploaded_file is not None:
18
+ file_type = detect_file_type(uploaded_file.name)
19
+ if file_type == "zip":
20
+ # Process the file
21
+ data = preprocess_whatsapp_messages(uploaded_file, file_type)
22
+ if data.empty:
23
+ st.write("No messages found or the file could not be processed.")
24
+ else:
25
+ # Date selector
26
+ date_options = data['date'].dt.strftime('%Y-%m-%d').unique()
27
+ selected_date = st.selectbox("Select a date for analysis:", date_options)
28
+
29
+ if selected_date:
30
+ text_for_analysis = get_dated_input(data, selected_date)
31
+ with st.expander("Show/Hide Original Conversation"):
32
+ st.markdown(f"```\n{text_for_analysis}\n```", unsafe_allow_html=True)
33
+ process = st.button('Process')
34
+ if process:
35
+ # Load models
36
+ tokenizer_sentiment, model_sentiment = load_sentiment_analyzer()
37
+ tokenizer_summary, model_summary = load_summarizer()
38
+ pipe_ner = load_NER()
39
+
40
+ # Load models
41
+ tokenizer_sentiment, model_sentiment = load_sentiment_analyzer()
42
+ tokenizer_summary, model_summary = load_summarizer()
43
+ pipe_ner = load_NER()
44
+
45
+ # Perform analysis
46
+ sentiment = get_sentiment_analysis(text_for_analysis, tokenizer_sentiment, model_sentiment)
47
+ summary = generate_summary(text_for_analysis, tokenizer_summary, model_summary)
48
+ ner_results = get_NER(text_for_analysis, pipe_ner)
49
+
50
+ # Display results
51
+ st.subheader("Sentiment Analysis")
52
+ st.write("Sentiment:", sentiment)
53
+
54
+ st.subheader("Summary")
55
+ st.write("Summary:", summary)
56
+
57
+ st.subheader("Named Entity Recognition")
58
+ ner_df = pd.DataFrame(ner_results, columns=["Word", "Entity Group"])
59
+ st.write(ner_df)
60
+ else:
61
+ st.error("Unsupported file type. Please upload a .txt or .zip file.")
62
+ else:
63
+ st.info("Please upload a file to proceed.")
64
+
65
+ if __name__ == "__main__":
66
+ main()
67
+
68
+
69
+
70
+
71
+
72
+
73
+
74
+
75
+
76
+
model_functions.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import (AutoModelForSequenceClassification, AutoModelForSeq2SeqLM,
3
+ AutoConfig, AutoModelForTokenClassification,
4
+ AutoTokenizer, pipeline)
5
+ from peft import PeftModel, PeftConfig
6
+
7
+
8
+
9
+
10
+ def load_sentiment_analyzer():
11
+ tokenizer = AutoTokenizer.from_pretrained("aliciiavs/sentiment-analysis-whatsapp2")
12
+ model = AutoModelForSequenceClassification.from_pretrained("aliciiavs/sentiment-analysis-whatsapp2")
13
+
14
+ return tokenizer, model
15
+
16
+ def load_summarizer():
17
+ config = PeftConfig.from_pretrained("marcelomoreno26/bart-large-samsum-adapter")
18
+ model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large")
19
+ tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
20
+ tokenizer.pad_token = tokenizer.eos_token
21
+ model = PeftModel.from_pretrained(model, "marcelomoreno26/bart-large-samsum-adapter", config=config)
22
+ model = model.merge_and_unload()
23
+
24
+ return tokenizer, model
25
+
26
+ def load_NER():
27
+ config = AutoConfig.from_pretrained("hannahisrael03/distilbert-base-uncased-finetuned-wikiann")
28
+ model = AutoModelForTokenClassification.from_pretrained("hannahisrael03/distilbert-base-uncased-finetuned-wikiann",config=config)
29
+ tokenizer = AutoTokenizer.from_pretrained("hannahisrael03/distilbert-base-uncased-finetuned-wikiann")
30
+ pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
31
+
32
+ return pipe
33
+
34
+ def get_sentiment_analysis(text, tokenizer, model):
35
+ inputs = tokenizer(text, padding=True, return_tensors="pt")
36
+ with torch.no_grad():
37
+ outputs = model(**inputs)
38
+ # Get predicted probabilities and predicted label
39
+ probabilities = torch.softmax(outputs.logits, dim=1)
40
+ predicted_label = torch.argmax(probabilities, dim=1)
41
+ # Convert the predicted label tensor to a Python integer
42
+ predicted_label = predicted_label.item()
43
+ # Map predicted label index to sentiment label
44
+ label_dic = {0: 'sadness', 1: 'joy', 2: 'love', 3: 'anger', 4: 'fear', 5: 'surprise'}
45
+ # Print the predicted sentiment label
46
+ return label_dic[predicted_label]
47
+
48
+
49
+ def generate_summary(text, tokenizer, model):
50
+ prefix = "summarize: "
51
+ encoded_input = tokenizer.encode_plus(prefix + text, return_tensors='pt', add_special_tokens=True)
52
+ input_ids = encoded_input['input_ids']
53
+
54
+ # Check if input_ids exceed the model's max length
55
+ max_length = 512
56
+ if input_ids.shape[1] > max_length:
57
+ # Split the input_ids into manageable segments
58
+ total_summary = []
59
+ for i in range(0, input_ids.shape[1], max_length - 50): # We use max_length - 50 to allow for some room for the model to generate context
60
+ segment_ids = input_ids[:, i:i + max_length]
61
+ output_ids = model.generate(segment_ids, max_length=150, num_beams=5, early_stopping=True)
62
+ segment_summary = tokenizer.decode(output_ids[0], skip_special_tokens=True)
63
+ total_summary.append(segment_summary)
64
+
65
+ # Concatenate all segment summaries
66
+ summary = ' '.join(total_summary)
67
+ else:
68
+ # Process as usual
69
+ output_ids = model.generate(input_ids, max_length=150, num_beams=5, early_stopping=True)
70
+ summary = tokenizer.decode(output_ids[0], skip_special_tokens=True)
71
+
72
+ return summary
73
+
74
+
75
+ def get_NER(text, pipe):
76
+ # Use pipeline to predict NER
77
+ results = pipe(text)
78
+ # Filter duplicates while retaining the highest score for each entity type and word combination
79
+ unique_entities = {}
80
+ for ent in results:
81
+ key = (ent['entity_group'], ent['word'])
82
+ if key not in unique_entities or unique_entities[key]['score'] < ent['score']:
83
+ unique_entities[key] = ent
84
+
85
+ # Prepare the output, sorted by the start position to maintain the order they appear in the text
86
+ filtered_results = sorted(unique_entities.values(), key=lambda x: x['start'])
87
+ # Format the results for a table display
88
+ formatted_results = [[ent['word'], ent['entity_group']] for ent in filtered_results]
89
+ filtered_results = []
90
+ for entity in formatted_results:
91
+ if entity[1] == 'ORG':
92
+ # Split the 'word' by spaces and count the number of words
93
+ if len(entity[0].split()) <= 2:
94
+ filtered_results.append(entity)
95
+ else:
96
+ # Add non-ORG entities without filtering
97
+ filtered_results.append(entity)
98
+
99
+ return filtered_results
100
+
101
+
102
+
preprocessor.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import zipfile
3
+ import re
4
+ from io import BytesIO
5
+
6
+
7
+ def detect_file_type(file_path):
8
+ type = file_path[-3:]
9
+ if type in ["txt","zip"]:
10
+ return type
11
+ else:
12
+ return "unknown"
13
+
14
+ def preprocess_whatsapp_messages(file_path, file_type):
15
+ """
16
+ Preprocesses the Whatsapp messages zip file into a Pandas Dataframe, all messages in one day go
17
+ to a row and a timestamp is added.
18
+
19
+ Args:
20
+ file_path (str): Location of the file (zip or txt) of the conversation.
21
+
22
+ Returns:
23
+ str: Dataframe
24
+ """
25
+
26
+ # Load the zip file and extract text data
27
+ print(file_type)
28
+ if file_type == "zip":
29
+ with zipfile.ZipFile(file_path, 'r') as z:
30
+ file_name = z.namelist()[0]
31
+ with z.open(file_name) as file:
32
+ text_data = file.read().decode('utf-8')
33
+ else:
34
+ text_data = BytesIO(file_path.getvalue()).read().decode('utf-8')
35
+
36
+
37
+ # Split the text data into lines
38
+ lines = text_data.strip().split('\n')
39
+
40
+ # Create a DataFrame
41
+ df = pd.DataFrame(lines, columns=['message'])
42
+
43
+ # Process each line to separate timestamp and text
44
+ df[['timestamp', 'text']] = df['message'].str.split(']', n=1, expand=True)
45
+ df['timestamp'] = df['timestamp'].str.strip('[')
46
+
47
+ # Handle cases where the split might not work (e.g., missing ']' in a line)
48
+ df.dropna(subset=['timestamp', 'text'], inplace=True)
49
+
50
+ # Convert timestamp to datetime and remove the time, keeping only the date
51
+ df['timestamp'] = pd.to_datetime(df['timestamp'], format='%d/%m/%y, %H:%M:%S', errors='coerce').dt.date
52
+
53
+ # Drop rows where the timestamp conversion failed (which results in NaT)
54
+ df.dropna(subset=['timestamp'], inplace=True)
55
+
56
+ # Remove initial WhatsApp system messages in English and Spanish
57
+ filter_text_en = "Your messages and calls are end-to-end encrypted"
58
+ filter_text_es = "Los mensajes y las llamadas est谩n cifrados de extremo a extremo"
59
+ df = df[~df['text'].str.contains(filter_text_en, na=False)]
60
+ df = df[~df['text'].str.contains(filter_text_es, na=False)]
61
+
62
+ # Additional preprocessing steps:
63
+ # Remove URLs and convert text to lowercase
64
+ df['text'] = df['text'].apply(lambda x: re.sub(r'https?:\/\/\S+', '', x)) # Remove URLs
65
+ df['text'] = df['text'].apply(lambda x: x.lower()) # Convert text to lowercase
66
+
67
+ # Remove emojis, images, stickers, documents while preserving colons after sender names
68
+ df['text'] = df['text'].apply(lambda x: re.sub(r'(?<!\w)(:\s|\s:\s|\s:)', '', x)) # Remove colons that are not part of sender's name
69
+ df['text'] = df['text'].apply(lambda x: re.sub(r'\[image omitted\]', '', x)) # Remove images
70
+ df['text'] = df['text'].apply(lambda x: re.sub(r'\[sticker omitted\]', '', x)) # Remove stickers
71
+ df['text'] = df['text'].apply(lambda x: re.sub(r'\[document omitted\]', '', x)) # Remove documents
72
+ df['text'] = df['text'].apply(lambda x: re.sub(r'<se edit贸 este mensaje.>', '', x)) # Remove editing function (new Whatsapp addition) in Spanish
73
+ df['text'] = df['text'].apply(lambda x: re.sub(r'<this message was edited.>', '', x)) # Remove editing function (new Whatsapp addition) in English I AM GUESSING IDk
74
+
75
+ # Group by date and concatenate all messages from the same date
76
+ df = df.groupby('timestamp')['text'].apply(lambda x: '\n'.join(x)).reset_index()
77
+ df.columns = ['date', 'text']
78
+ df['date'] = pd.to_datetime(df['date'])
79
+ df['text'] = df['text'].astype(str)
80
+
81
+ return df
82
+
83
+ def get_dated_input(data, selected_date):
84
+ '''
85
+ The Pandas dataframe is processed and the text is extracted.
86
+ :param data:
87
+ :param selected_date:
88
+ :return:
89
+ '''
90
+ selected_date = pd.to_datetime(selected_date)
91
+ data_for_model = data[data['date'].dt.date == selected_date.date()]
92
+ data_for_model.loc[:, 'text'] = data_for_model['text']
93
+ first_row_text = data_for_model['text'].iloc[0]
94
+ return first_row_text
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ torch==2.2.2
2
+ pandas==2.2.2
3
+ transformers==4.39.3
4
+ streamlit==1.33.0
5
+ git+https://github.com/huggingface/peft.git