|
|
|
|
|
|
|
import os
|
|
from .parser import DFG_python,DFG_java,DFG_ruby,DFG_go,DFG_php,DFG_javascript,DFG_csharp
|
|
from .parser import (remove_comments_and_docstrings,
|
|
tree_to_token_index,
|
|
index_to_code_token,
|
|
tree_to_variable_index)
|
|
from tree_sitter import Language, Parser
|
|
import pdb
|
|
|
|
dfg_function={
|
|
'python':DFG_python,
|
|
'java':DFG_java,
|
|
'ruby':DFG_ruby,
|
|
'go':DFG_go,
|
|
'php':DFG_php,
|
|
'javascript':DFG_javascript,
|
|
'c_sharp':DFG_csharp,
|
|
}
|
|
|
|
def calc_dataflow_match(references, candidate, lang):
|
|
return corpus_dataflow_match([references], [candidate], lang)
|
|
|
|
def corpus_dataflow_match(references, candidates, lang):
|
|
LANGUAGE = Language(os.path.abspath(os.path.dirname(__file__)) + '/parser/my-languages.so', lang)
|
|
parser = Parser()
|
|
parser.set_language(LANGUAGE)
|
|
parser = [parser,dfg_function[lang]]
|
|
match_count = 0
|
|
total_count = 0
|
|
|
|
for i in range(len(candidates)):
|
|
references_sample = references[i]
|
|
candidate = candidates[i]
|
|
for reference in references_sample:
|
|
try:
|
|
candidate=remove_comments_and_docstrings(candidate,'java')
|
|
except:
|
|
pass
|
|
try:
|
|
reference=remove_comments_and_docstrings(reference,'java')
|
|
except:
|
|
pass
|
|
|
|
cand_dfg = get_data_flow(candidate, parser)
|
|
ref_dfg = get_data_flow(reference, parser)
|
|
|
|
normalized_cand_dfg = normalize_dataflow(cand_dfg)
|
|
normalized_ref_dfg = normalize_dataflow(ref_dfg)
|
|
|
|
if len(normalized_ref_dfg) > 0:
|
|
total_count += len(normalized_ref_dfg)
|
|
for dataflow in normalized_ref_dfg:
|
|
if dataflow in normalized_cand_dfg:
|
|
match_count += 1
|
|
normalized_cand_dfg.remove(dataflow)
|
|
if total_count == 0:
|
|
print("WARNING: There is no reference data-flows extracted from the whole corpus, and the data-flow match score degenerates to 0. Please consider ignoring this score.")
|
|
return 0
|
|
score = match_count / total_count
|
|
return score
|
|
|
|
def get_data_flow(code, parser):
|
|
try:
|
|
tree = parser[0].parse(bytes(code,'utf8'))
|
|
root_node = tree.root_node
|
|
tokens_index=tree_to_token_index(root_node)
|
|
code=code.split('\n')
|
|
code_tokens=[index_to_code_token(x,code) for x in tokens_index]
|
|
index_to_code={}
|
|
for idx,(index,code) in enumerate(zip(tokens_index,code_tokens)):
|
|
index_to_code[index]=(idx,code)
|
|
try:
|
|
DFG,_=parser[1](root_node,index_to_code,{})
|
|
except:
|
|
DFG=[]
|
|
DFG=sorted(DFG,key=lambda x:x[1])
|
|
indexs=set()
|
|
for d in DFG:
|
|
if len(d[-1])!=0:
|
|
indexs.add(d[1])
|
|
for x in d[-1]:
|
|
indexs.add(x)
|
|
new_DFG=[]
|
|
for d in DFG:
|
|
if d[1] in indexs:
|
|
new_DFG.append(d)
|
|
codes=code_tokens
|
|
dfg=new_DFG
|
|
except:
|
|
codes=code.split()
|
|
dfg=[]
|
|
|
|
dic={}
|
|
for d in dfg:
|
|
if d[1] not in dic:
|
|
dic[d[1]]=d
|
|
else:
|
|
dic[d[1]]=(d[0],d[1],d[2],list(set(dic[d[1]][3]+d[3])),list(set(dic[d[1]][4]+d[4])))
|
|
DFG=[]
|
|
for d in dic:
|
|
DFG.append(dic[d])
|
|
dfg=DFG
|
|
return dfg
|
|
|
|
def normalize_dataflow_item(dataflow_item):
|
|
var_name = dataflow_item[0]
|
|
var_pos = dataflow_item[1]
|
|
relationship = dataflow_item[2]
|
|
par_vars_name_list = dataflow_item[3]
|
|
par_vars_pos_list = dataflow_item[4]
|
|
|
|
var_names = list(set(par_vars_name_list+[var_name]))
|
|
norm_names = {}
|
|
for i in range(len(var_names)):
|
|
norm_names[var_names[i]] = 'var_'+str(i)
|
|
|
|
norm_var_name = norm_names[var_name]
|
|
relationship = dataflow_item[2]
|
|
norm_par_vars_name_list = [norm_names[x] for x in par_vars_name_list]
|
|
|
|
return (norm_var_name, relationship, norm_par_vars_name_list)
|
|
|
|
def normalize_dataflow(dataflow):
|
|
var_dict = {}
|
|
i = 0
|
|
normalized_dataflow = []
|
|
for item in dataflow:
|
|
var_name = item[0]
|
|
relationship = item[2]
|
|
par_vars_name_list = item[3]
|
|
for name in par_vars_name_list:
|
|
if name not in var_dict:
|
|
var_dict[name] = 'var_'+str(i)
|
|
i += 1
|
|
if var_name not in var_dict:
|
|
var_dict[var_name] = 'var_'+str(i)
|
|
i+= 1
|
|
normalized_dataflow.append((var_dict[var_name], relationship, [var_dict[x] for x in par_vars_name_list]))
|
|
return normalized_dataflow
|
|
|
|
|