Spaces:
Running
Running
File size: 1,784 Bytes
ecb1e20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import streamlit as st
import pandas as pd
st.title("βββ ββ β β β β β βποΈββοΈ benchbench-Leaderboard ποΈββοΈ")
# df = pd.read_csv("BAT_w_arena_10_random.csv")
# df = (
# (
# df.rename(
# columns={
# "z_score": "Z_Score",
# "benchmark": "Benchmark",
# }
# ).drop(
# columns=[
# "Unnamed: 0",
# "z_test_pass",
# ]
# )
# )
# .sort_values("Z_Score", ascending=False)
# .query(
# 'Benchmark!="Aggregate" and Benchmark!="MAGI" and Benchmark!="Alpaca(v2, len adj)" and Benchmark!="GPT4All"'
# )
# )
# df.replace(
# {
# "Arena Elo": "LMSys Arena",
# "Hugging-6": "HF OpenLLM",
# "Alpaca(v2)": "Alpaca v2",
# "Alpaca(v1)": "Alpaca v1",
# "EQ-Bench(v2)": "EQ-Bench v2",
# },
# inplace=True,
# )
# col1, col2, col3 = st.columns(3)
# with col1:
# st.header("β β β β β β β β Agree")
# st.dataframe(df.query("Z_Score>=0"), hide_index=True)
# with col2:
# st.header("β ββ β Disagree")
# st.dataframe(df.query("Z_Score<0").sort_values("Z_Score"), hide_index=True)
# with col3:
# st.header("β ββ β Configs")
# # st.selectbox(label="Reference Benchmarks", options=["LMSys Arena"])
# options = st.multiselect(
# "Reference Benchmarks",
# ["LMSys Arena", "Open Compass", "Yellow", "Red", "Blue"],
# ["LMSys Arena", "Open Compass"],
# )
# st.selectbox(label="# models compared", options=[20])
# st.selectbox(label="Model Select Strategy", options=["Random"])
# st.write("βββββββ")
# st.button("Upload a new benchmark")
|