Spaces:
Running
Running
ssed
Browse files- app.py +1 -0
- models/fm4m.py +13 -4
- models/smi_ssed/__pycache__/load.cpython-310.pyc +0 -0
- models/smi_ssed/bert_vocab_curated.txt +2393 -0
- models/smi_ssed/load.py +550 -0
- models/smi_ted/smi_ted_light/load.py +4 -2
- requirements.txt +1 -0
app.py
CHANGED
@@ -65,6 +65,7 @@ models_enabled = [
|
|
65 |
"MHG-GED",
|
66 |
"MolFormer",
|
67 |
"SMI-TED",
|
|
|
68 |
"Mordred",
|
69 |
"MorganFingerprint",
|
70 |
]
|
|
|
65 |
"MHG-GED",
|
66 |
"MolFormer",
|
67 |
"SMI-TED",
|
68 |
+
"SMI-SSED",
|
69 |
"Mordred",
|
70 |
"MorganFingerprint",
|
71 |
]
|
models/fm4m.py
CHANGED
@@ -31,6 +31,7 @@ sys.path.append("models/")
|
|
31 |
from models.selfies_ted.load import SELFIES as bart
|
32 |
from models.mhg_model import load as mhg
|
33 |
from models.smi_ted.smi_ted_light.load import load_smi_ted
|
|
|
34 |
|
35 |
import mordred
|
36 |
from mordred import Calculator, descriptors
|
@@ -58,13 +59,15 @@ def avail_models_data():
|
|
58 |
models = [{"Name": "bart","Model Name": "SELFIES-TED","Description": "BART model for string based SELFIES modality", "Timestamp": "2024-06-21 12:32:20"},
|
59 |
{"Name": "mol-xl","Model Name": "MolFormer", "Description": "MolFormer model for string based SMILES modality", "Timestamp": "2024-06-21 12:35:56"},
|
60 |
{"Name": "mhg", "Model Name": "MHG-GED","Description": "Molecular hypergraph model", "Timestamp": "2024-07-10 00:09:42"},
|
61 |
-
{"Name": "smi-ted", "Model Name": "SMI-TED","Description": "SMILES based encoder decoder model", "Timestamp": "2024-07-10 00:09:42"}
|
|
|
62 |
|
63 |
|
64 |
def avail_models(raw=False):
|
65 |
global models
|
66 |
|
67 |
models = [{"Name": "smi-ted", "Model Name": "SMI-TED","Description": "SMILES based encoder decoder model"},
|
|
|
68 |
{"Name": "bart","Model Name": "SELFIES-TED","Description": "BART model for string based SELFIES modality"},
|
69 |
{"Name": "mol-xl","Model Name": "MolFormer", "Description": "MolFormer model for string based SMILES modality"},
|
70 |
{"Name": "mhg", "Model Name": "MHG-GED","Description": "Molecular hypergraph model"},
|
@@ -201,7 +204,7 @@ avail_models_data()
|
|
201 |
|
202 |
|
203 |
def get_representation(train_data,test_data,model_type, return_tensor=True):
|
204 |
-
alias = {"MHG-GED": "mhg", "SELFIES-TED": "bart", "MolFormer": "mol-xl", "Molformer": "mol-xl", "SMI-TED": "smi-ted"}
|
205 |
if model_type in alias.keys():
|
206 |
model_type = alias[model_type]
|
207 |
|
@@ -230,6 +233,12 @@ def get_representation(train_data,test_data,model_type, return_tensor=True):
|
|
230 |
x_batch = model.encode(train_data, return_torch=return_tensor)
|
231 |
x_batch_test = model.encode(test_data, return_torch=return_tensor)
|
232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
elif model_type == "mol-xl":
|
234 |
model = AutoModel.from_pretrained("ibm/MoLFormer-XL-both-10pct", deterministic_eval=True,
|
235 |
trust_remote_code=True)
|
@@ -305,7 +314,7 @@ def get_representation(train_data,test_data,model_type, return_tensor=True):
|
|
305 |
|
306 |
def single_modal(model,dataset=None, downstream_model=None, params=None, x_train=None, x_test=None, y_train=None, y_test=None):
|
307 |
print(model)
|
308 |
-
alias = {"MHG-GED":"mhg", "SELFIES-TED": "bart", "MolFormer":"mol-xl", "Molformer": "mol-xl", "SMI-TED": "smi-ted"}
|
309 |
data = avail_models(raw=True)
|
310 |
df = pd.DataFrame(data)
|
311 |
#print(list(df["Name"].values))
|
@@ -619,7 +628,7 @@ def multi_modal(model_list,dataset=None, downstream_model=None,params=None, x_tr
|
|
619 |
df = pd.DataFrame(data)
|
620 |
list(df["Name"].values)
|
621 |
|
622 |
-
alias = {"MHG-GED":"mhg", "SELFIES-TED": "bart", "MolFormer":"mol-xl", "Molformer": "mol-xl","SMI-TED":"smi-ted", "Mordred": "Mordred", "MorganFingerprint": "MorganFingerprint"}
|
623 |
#if set(model_list).issubset(list(df["Name"].values)):
|
624 |
if set(model_list).issubset(list(alias.keys())):
|
625 |
for i, model in enumerate(model_list):
|
|
|
31 |
from models.selfies_ted.load import SELFIES as bart
|
32 |
from models.mhg_model import load as mhg
|
33 |
from models.smi_ted.smi_ted_light.load import load_smi_ted
|
34 |
+
from models.smi_ssed.load import load_smi_ssed
|
35 |
|
36 |
import mordred
|
37 |
from mordred import Calculator, descriptors
|
|
|
59 |
models = [{"Name": "bart","Model Name": "SELFIES-TED","Description": "BART model for string based SELFIES modality", "Timestamp": "2024-06-21 12:32:20"},
|
60 |
{"Name": "mol-xl","Model Name": "MolFormer", "Description": "MolFormer model for string based SMILES modality", "Timestamp": "2024-06-21 12:35:56"},
|
61 |
{"Name": "mhg", "Model Name": "MHG-GED","Description": "Molecular hypergraph model", "Timestamp": "2024-07-10 00:09:42"},
|
62 |
+
{"Name": "smi-ted", "Model Name": "SMI-TED","Description": "SMILES based encoder decoder model", "Timestamp": "2024-07-10 00:09:42"},
|
63 |
+
{"Name": "smi-ssed", "Model Name": "SMI-SSED","Description": "SMILES based encoder decoder model", "Timestamp": "2024-07-10 00:09:42"}]
|
64 |
|
65 |
|
66 |
def avail_models(raw=False):
|
67 |
global models
|
68 |
|
69 |
models = [{"Name": "smi-ted", "Model Name": "SMI-TED","Description": "SMILES based encoder decoder model"},
|
70 |
+
{"Name": "smi-ssed", "Model Name": "SMI-SSED","Description": "SMILES based encoder decoder model"},
|
71 |
{"Name": "bart","Model Name": "SELFIES-TED","Description": "BART model for string based SELFIES modality"},
|
72 |
{"Name": "mol-xl","Model Name": "MolFormer", "Description": "MolFormer model for string based SMILES modality"},
|
73 |
{"Name": "mhg", "Model Name": "MHG-GED","Description": "Molecular hypergraph model"},
|
|
|
204 |
|
205 |
|
206 |
def get_representation(train_data,test_data,model_type, return_tensor=True):
|
207 |
+
alias = {"MHG-GED": "mhg", "SELFIES-TED": "bart", "MolFormer": "mol-xl", "Molformer": "mol-xl", "SMI-TED": "smi-ted", "SMI-SSED": "smi-ssed"}
|
208 |
if model_type in alias.keys():
|
209 |
model_type = alias[model_type]
|
210 |
|
|
|
233 |
x_batch = model.encode(train_data, return_torch=return_tensor)
|
234 |
x_batch_test = model.encode(test_data, return_torch=return_tensor)
|
235 |
|
236 |
+
elif model_type == "smi-ssed":
|
237 |
+
model = load_smi_ssed(folder='', ckpt_filename='')
|
238 |
+
with torch.no_grad():
|
239 |
+
x_batch = model.encode(train_data, return_torch=return_tensor)
|
240 |
+
x_batch_test = model.encode(test_data, return_torch=return_tensor)
|
241 |
+
|
242 |
elif model_type == "mol-xl":
|
243 |
model = AutoModel.from_pretrained("ibm/MoLFormer-XL-both-10pct", deterministic_eval=True,
|
244 |
trust_remote_code=True)
|
|
|
314 |
|
315 |
def single_modal(model,dataset=None, downstream_model=None, params=None, x_train=None, x_test=None, y_train=None, y_test=None):
|
316 |
print(model)
|
317 |
+
alias = {"MHG-GED":"mhg", "SELFIES-TED": "bart", "MolFormer":"mol-xl", "Molformer": "mol-xl", "SMI-TED": "smi-ted", "SMI-SSED": "smi-ssed"}
|
318 |
data = avail_models(raw=True)
|
319 |
df = pd.DataFrame(data)
|
320 |
#print(list(df["Name"].values))
|
|
|
628 |
df = pd.DataFrame(data)
|
629 |
list(df["Name"].values)
|
630 |
|
631 |
+
alias = {"MHG-GED":"mhg", "SELFIES-TED": "bart", "MolFormer":"mol-xl", "Molformer": "mol-xl","SMI-TED":"smi-ted","SMI-SSED":"smi-ssed", "Mordred": "Mordred", "MorganFingerprint": "MorganFingerprint"}
|
632 |
#if set(model_list).issubset(list(df["Name"].values)):
|
633 |
if set(model_list).issubset(list(alias.keys())):
|
634 |
for i, model in enumerate(model_list):
|
models/smi_ssed/__pycache__/load.cpython-310.pyc
ADDED
Binary file (15.8 kB). View file
|
|
models/smi_ssed/bert_vocab_curated.txt
ADDED
@@ -0,0 +1,2393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<bos>
|
2 |
+
<eos>
|
3 |
+
<pad>
|
4 |
+
<mask>
|
5 |
+
C
|
6 |
+
c
|
7 |
+
(
|
8 |
+
)
|
9 |
+
1
|
10 |
+
O
|
11 |
+
N
|
12 |
+
2
|
13 |
+
=
|
14 |
+
n
|
15 |
+
3
|
16 |
+
[C@H]
|
17 |
+
[C@@H]
|
18 |
+
F
|
19 |
+
S
|
20 |
+
4
|
21 |
+
Cl
|
22 |
+
-
|
23 |
+
o
|
24 |
+
s
|
25 |
+
[nH]
|
26 |
+
#
|
27 |
+
/
|
28 |
+
Br
|
29 |
+
[C@]
|
30 |
+
[C@@]
|
31 |
+
[N+]
|
32 |
+
[O-]
|
33 |
+
5
|
34 |
+
\
|
35 |
+
.
|
36 |
+
I
|
37 |
+
6
|
38 |
+
[S@]
|
39 |
+
[S@@]
|
40 |
+
P
|
41 |
+
[N-]
|
42 |
+
[Si]
|
43 |
+
7
|
44 |
+
[n+]
|
45 |
+
[2H]
|
46 |
+
8
|
47 |
+
[NH+]
|
48 |
+
B
|
49 |
+
9
|
50 |
+
[C-]
|
51 |
+
[Na+]
|
52 |
+
[Cl-]
|
53 |
+
[c-]
|
54 |
+
[CH]
|
55 |
+
%10
|
56 |
+
[NH2+]
|
57 |
+
[P+]
|
58 |
+
[B]
|
59 |
+
[I-]
|
60 |
+
%11
|
61 |
+
[CH2-]
|
62 |
+
[O+]
|
63 |
+
[NH3+]
|
64 |
+
[C]
|
65 |
+
[Br-]
|
66 |
+
[IH2]
|
67 |
+
[S-]
|
68 |
+
[cH-]
|
69 |
+
%12
|
70 |
+
[nH+]
|
71 |
+
[B-]
|
72 |
+
[K+]
|
73 |
+
[Sn]
|
74 |
+
[Se]
|
75 |
+
[CH-]
|
76 |
+
[HH]
|
77 |
+
[Y]
|
78 |
+
[n-]
|
79 |
+
[CH3-]
|
80 |
+
[SiH]
|
81 |
+
[S+]
|
82 |
+
%13
|
83 |
+
[SiH2]
|
84 |
+
[Li+]
|
85 |
+
[NH-]
|
86 |
+
%14
|
87 |
+
[Na]
|
88 |
+
[CH2]
|
89 |
+
[O-2]
|
90 |
+
[U+2]
|
91 |
+
[W]
|
92 |
+
[Al]
|
93 |
+
[P@]
|
94 |
+
[Fe+2]
|
95 |
+
[PH+]
|
96 |
+
%15
|
97 |
+
[Cl+3]
|
98 |
+
[Zn+2]
|
99 |
+
[Ir]
|
100 |
+
[Mg+2]
|
101 |
+
[Pt+2]
|
102 |
+
[OH2+]
|
103 |
+
[As]
|
104 |
+
[Fe]
|
105 |
+
[OH+]
|
106 |
+
[Zr+2]
|
107 |
+
[3H]
|
108 |
+
[Ge]
|
109 |
+
[SiH3]
|
110 |
+
[OH-]
|
111 |
+
[NH4+]
|
112 |
+
[Cu+2]
|
113 |
+
[P@@]
|
114 |
+
p
|
115 |
+
[Pt]
|
116 |
+
%16
|
117 |
+
[Ca+2]
|
118 |
+
[Zr]
|
119 |
+
[F-]
|
120 |
+
[C+]
|
121 |
+
[Ti]
|
122 |
+
[P-]
|
123 |
+
[V]
|
124 |
+
[se]
|
125 |
+
[U]
|
126 |
+
[O]
|
127 |
+
[Ni+2]
|
128 |
+
[Zn]
|
129 |
+
[Co]
|
130 |
+
[Ni]
|
131 |
+
[Pd+2]
|
132 |
+
[Cu]
|
133 |
+
%17
|
134 |
+
[Cu+]
|
135 |
+
[Te]
|
136 |
+
[H+]
|
137 |
+
[CH+]
|
138 |
+
[Li]
|
139 |
+
[Pd]
|
140 |
+
[Mo]
|
141 |
+
[Ru+2]
|
142 |
+
[o+]
|
143 |
+
[Re]
|
144 |
+
[SH+]
|
145 |
+
%18
|
146 |
+
[Ac]
|
147 |
+
[Cr]
|
148 |
+
[NH2-]
|
149 |
+
[K]
|
150 |
+
[13CH2]
|
151 |
+
[c]
|
152 |
+
[Zr+4]
|
153 |
+
[Tl]
|
154 |
+
[13C]
|
155 |
+
[Mn]
|
156 |
+
[N@+]
|
157 |
+
[Hg]
|
158 |
+
[Rh]
|
159 |
+
[Ti+4]
|
160 |
+
[Sb]
|
161 |
+
[Co+2]
|
162 |
+
[Ag+]
|
163 |
+
[Ru]
|
164 |
+
%19
|
165 |
+
[N@@+]
|
166 |
+
[Ti+2]
|
167 |
+
[Al+3]
|
168 |
+
[Pb]
|
169 |
+
[I+]
|
170 |
+
[18F]
|
171 |
+
[s+]
|
172 |
+
[Rb+]
|
173 |
+
[Ba+2]
|
174 |
+
[H-]
|
175 |
+
[Fe+3]
|
176 |
+
[Ir+3]
|
177 |
+
[13cH]
|
178 |
+
%20
|
179 |
+
[AlH2]
|
180 |
+
[Au+]
|
181 |
+
[13c]
|
182 |
+
[SH2+]
|
183 |
+
[Sn+2]
|
184 |
+
[Mn+2]
|
185 |
+
[Si-]
|
186 |
+
[Ag]
|
187 |
+
[N]
|
188 |
+
[Bi]
|
189 |
+
%21
|
190 |
+
[In]
|
191 |
+
[CH2+]
|
192 |
+
[Y+3]
|
193 |
+
[Ga]
|
194 |
+
%22
|
195 |
+
[Co+3]
|
196 |
+
[Au]
|
197 |
+
[13CH3]
|
198 |
+
[Mg]
|
199 |
+
[Cs+]
|
200 |
+
[W+2]
|
201 |
+
[Hf]
|
202 |
+
[Zn+]
|
203 |
+
[Se-]
|
204 |
+
[S-2]
|
205 |
+
[Ca]
|
206 |
+
[pH]
|
207 |
+
[ClH+]
|
208 |
+
[Ti+3]
|
209 |
+
%23
|
210 |
+
[Ru+]
|
211 |
+
[SH-]
|
212 |
+
[13CH]
|
213 |
+
[IH+]
|
214 |
+
[Hf+4]
|
215 |
+
[Rf]
|
216 |
+
[OH3+]
|
217 |
+
%24
|
218 |
+
[Pt+4]
|
219 |
+
[Zr+3]
|
220 |
+
[PH3+]
|
221 |
+
[Sr+2]
|
222 |
+
[Cd+2]
|
223 |
+
[Cd]
|
224 |
+
%25
|
225 |
+
[Os]
|
226 |
+
[BH-]
|
227 |
+
[Sn+4]
|
228 |
+
[Cr+3]
|
229 |
+
[Ru+3]
|
230 |
+
[PH2+]
|
231 |
+
[Rh+2]
|
232 |
+
[V+2]
|
233 |
+
%26
|
234 |
+
[Gd+3]
|
235 |
+
[Pb+2]
|
236 |
+
[PH]
|
237 |
+
[Hg+]
|
238 |
+
[Mo+2]
|
239 |
+
[AlH]
|
240 |
+
[Sn+]
|
241 |
+
%27
|
242 |
+
[Pd+]
|
243 |
+
b
|
244 |
+
[Rh+3]
|
245 |
+
[Hg+2]
|
246 |
+
[15NH]
|
247 |
+
[14C]
|
248 |
+
%28
|
249 |
+
[Mn+3]
|
250 |
+
[Si+]
|
251 |
+
[SeH]
|
252 |
+
[13C@H]
|
253 |
+
[NH]
|
254 |
+
[Ga+3]
|
255 |
+
[SiH-]
|
256 |
+
[13C@@H]
|
257 |
+
[Ce]
|
258 |
+
[Au+3]
|
259 |
+
[Bi+3]
|
260 |
+
[15N]
|
261 |
+
%29
|
262 |
+
[BH3-]
|
263 |
+
[14cH]
|
264 |
+
[Ti+]
|
265 |
+
[Gd]
|
266 |
+
[cH+]
|
267 |
+
[Cr+2]
|
268 |
+
[Sb-]
|
269 |
+
%30
|
270 |
+
[Be+2]
|
271 |
+
[Al+]
|
272 |
+
[te]
|
273 |
+
[11CH3]
|
274 |
+
[Sm]
|
275 |
+
[Pr]
|
276 |
+
[La]
|
277 |
+
%31
|
278 |
+
[Al-]
|
279 |
+
[Ta]
|
280 |
+
[125I]
|
281 |
+
[BH2-]
|
282 |
+
[Nb]
|
283 |
+
[Si@]
|
284 |
+
%32
|
285 |
+
[14c]
|
286 |
+
[Sb+3]
|
287 |
+
[Ba]
|
288 |
+
%33
|
289 |
+
[Os+2]
|
290 |
+
[Si@@]
|
291 |
+
[La+3]
|
292 |
+
[15n]
|
293 |
+
[15NH2]
|
294 |
+
[Nd+3]
|
295 |
+
%34
|
296 |
+
[14CH2]
|
297 |
+
[18O]
|
298 |
+
[Nd]
|
299 |
+
[GeH]
|
300 |
+
[Ni+3]
|
301 |
+
[Eu]
|
302 |
+
[Dy+3]
|
303 |
+
[Sc]
|
304 |
+
%36
|
305 |
+
[Se-2]
|
306 |
+
[As+]
|
307 |
+
%35
|
308 |
+
[AsH]
|
309 |
+
[Tb]
|
310 |
+
[Sb+5]
|
311 |
+
[Se+]
|
312 |
+
[Ce+3]
|
313 |
+
[c+]
|
314 |
+
[In+3]
|
315 |
+
[SnH]
|
316 |
+
[Mo+4]
|
317 |
+
%37
|
318 |
+
[V+4]
|
319 |
+
[Eu+3]
|
320 |
+
[Hf+2]
|
321 |
+
%38
|
322 |
+
[Pt+]
|
323 |
+
[p+]
|
324 |
+
[123I]
|
325 |
+
[Tl+]
|
326 |
+
[Sm+3]
|
327 |
+
%39
|
328 |
+
[Yb+3]
|
329 |
+
%40
|
330 |
+
[Yb]
|
331 |
+
[Os+]
|
332 |
+
%41
|
333 |
+
[10B]
|
334 |
+
[Sc+3]
|
335 |
+
[Al+2]
|
336 |
+
%42
|
337 |
+
[Sr]
|
338 |
+
[Tb+3]
|
339 |
+
[Po]
|
340 |
+
[Tc]
|
341 |
+
[PH-]
|
342 |
+
[AlH3]
|
343 |
+
[Ar]
|
344 |
+
[U+4]
|
345 |
+
[SnH2]
|
346 |
+
[Cl+2]
|
347 |
+
[si]
|
348 |
+
[Fe+]
|
349 |
+
[14CH3]
|
350 |
+
[U+3]
|
351 |
+
[Cl+]
|
352 |
+
%43
|
353 |
+
[GeH2]
|
354 |
+
%44
|
355 |
+
[Er+3]
|
356 |
+
[Mo+3]
|
357 |
+
[I+2]
|
358 |
+
[Fe+4]
|
359 |
+
[99Tc]
|
360 |
+
%45
|
361 |
+
[11C]
|
362 |
+
%46
|
363 |
+
[SnH3]
|
364 |
+
[S]
|
365 |
+
[Te+]
|
366 |
+
[Er]
|
367 |
+
[Lu+3]
|
368 |
+
[11B]
|
369 |
+
%47
|
370 |
+
%48
|
371 |
+
[P]
|
372 |
+
[Tm]
|
373 |
+
[Th]
|
374 |
+
[Dy]
|
375 |
+
[Pr+3]
|
376 |
+
[Ta+5]
|
377 |
+
[Nb+5]
|
378 |
+
[Rb]
|
379 |
+
[GeH3]
|
380 |
+
[Br+2]
|
381 |
+
%49
|
382 |
+
[131I]
|
383 |
+
[Fm]
|
384 |
+
[Cs]
|
385 |
+
[BH4-]
|
386 |
+
[Lu]
|
387 |
+
[15nH]
|
388 |
+
%50
|
389 |
+
[Ru+6]
|
390 |
+
[b-]
|
391 |
+
[Ho]
|
392 |
+
[Th+4]
|
393 |
+
[Ru+4]
|
394 |
+
%52
|
395 |
+
[14CH]
|
396 |
+
%51
|
397 |
+
[Cr+6]
|
398 |
+
[18OH]
|
399 |
+
[Ho+3]
|
400 |
+
[Ce+4]
|
401 |
+
[Bi+2]
|
402 |
+
[Co+]
|
403 |
+
%53
|
404 |
+
[Yb+2]
|
405 |
+
[Fe+6]
|
406 |
+
[Be]
|
407 |
+
%54
|
408 |
+
[SH3+]
|
409 |
+
[Np]
|
410 |
+
[As-]
|
411 |
+
%55
|
412 |
+
[14C@@H]
|
413 |
+
[Ir+2]
|
414 |
+
[GaH3]
|
415 |
+
[p-]
|
416 |
+
[GeH4]
|
417 |
+
[Sn+3]
|
418 |
+
[Os+4]
|
419 |
+
%56
|
420 |
+
[14C@H]
|
421 |
+
[sH+]
|
422 |
+
[19F]
|
423 |
+
[Eu+2]
|
424 |
+
[TlH]
|
425 |
+
%57
|
426 |
+
[Cr+4]
|
427 |
+
%58
|
428 |
+
[B@@-]
|
429 |
+
[SiH+]
|
430 |
+
[At]
|
431 |
+
[Am]
|
432 |
+
[Fe+5]
|
433 |
+
[AsH2]
|
434 |
+
[Si+4]
|
435 |
+
[B@-]
|
436 |
+
[Pu]
|
437 |
+
[SbH]
|
438 |
+
[P-2]
|
439 |
+
[Tm+3]
|
440 |
+
*
|
441 |
+
%59
|
442 |
+
[se+]
|
443 |
+
[IH-]
|
444 |
+
%60
|
445 |
+
[oH+]
|
446 |
+
[1H]
|
447 |
+
[15N+]
|
448 |
+
[124I]
|
449 |
+
[S@@+]
|
450 |
+
[P-3]
|
451 |
+
[H]
|
452 |
+
[IH2+]
|
453 |
+
[TeH]
|
454 |
+
[Xe]
|
455 |
+
[PH4+]
|
456 |
+
[Cr+]
|
457 |
+
[Cm]
|
458 |
+
[I+3]
|
459 |
+
%61
|
460 |
+
[Nb+2]
|
461 |
+
[Ru+5]
|
462 |
+
%62
|
463 |
+
[Ta+2]
|
464 |
+
[Tc+4]
|
465 |
+
[CH3+]
|
466 |
+
[Pm]
|
467 |
+
[Si@H]
|
468 |
+
[No]
|
469 |
+
%63
|
470 |
+
[Cr+5]
|
471 |
+
[Th+2]
|
472 |
+
[Zn-2]
|
473 |
+
[13C@]
|
474 |
+
[Lr]
|
475 |
+
%64
|
476 |
+
[99Tc+3]
|
477 |
+
%65
|
478 |
+
[13C@@]
|
479 |
+
%66
|
480 |
+
[Fe-]
|
481 |
+
[17O]
|
482 |
+
[siH]
|
483 |
+
[Sb+]
|
484 |
+
[OH]
|
485 |
+
[IH]
|
486 |
+
[11CH2]
|
487 |
+
[Cf]
|
488 |
+
[SiH2+]
|
489 |
+
[Gd+2]
|
490 |
+
[In+]
|
491 |
+
[Si@@H]
|
492 |
+
[Mn+]
|
493 |
+
[99Tc+4]
|
494 |
+
[Ga-]
|
495 |
+
%67
|
496 |
+
[S@+]
|
497 |
+
[Ge+4]
|
498 |
+
[Tl+3]
|
499 |
+
[16OH]
|
500 |
+
%68
|
501 |
+
[2H-]
|
502 |
+
[Ra]
|
503 |
+
[si-]
|
504 |
+
[NiH2]
|
505 |
+
[P@@H]
|
506 |
+
[Rh+]
|
507 |
+
[12C]
|
508 |
+
[35S]
|
509 |
+
[32P]
|
510 |
+
[SiH2-]
|
511 |
+
[AlH2+]
|
512 |
+
[16O]
|
513 |
+
%69
|
514 |
+
[BiH]
|
515 |
+
[BiH2]
|
516 |
+
[Zn-]
|
517 |
+
[BH]
|
518 |
+
[Tc+3]
|
519 |
+
[Ir+]
|
520 |
+
[Ni+]
|
521 |
+
%70
|
522 |
+
[InH2]
|
523 |
+
[InH]
|
524 |
+
[Nb+3]
|
525 |
+
[PbH]
|
526 |
+
[Bi+]
|
527 |
+
%71
|
528 |
+
[As+3]
|
529 |
+
%72
|
530 |
+
[18O-]
|
531 |
+
[68Ga+3]
|
532 |
+
%73
|
533 |
+
[Pa]
|
534 |
+
[76Br]
|
535 |
+
[Tc+5]
|
536 |
+
[pH+]
|
537 |
+
[64Cu+2]
|
538 |
+
[Ru+8]
|
539 |
+
%74
|
540 |
+
[PH2-]
|
541 |
+
[Si+2]
|
542 |
+
[17OH]
|
543 |
+
[RuH]
|
544 |
+
[111In+3]
|
545 |
+
[AlH+]
|
546 |
+
%75
|
547 |
+
%76
|
548 |
+
[W+]
|
549 |
+
[SbH2]
|
550 |
+
[PoH]
|
551 |
+
[Ru-]
|
552 |
+
[XeH]
|
553 |
+
[Tc+2]
|
554 |
+
[13C-]
|
555 |
+
[Br+]
|
556 |
+
[Pt-2]
|
557 |
+
[Es]
|
558 |
+
[Cu-]
|
559 |
+
[Mg+]
|
560 |
+
[3HH]
|
561 |
+
[P@H]
|
562 |
+
[ClH2+]
|
563 |
+
%77
|
564 |
+
[SH]
|
565 |
+
[Au-]
|
566 |
+
[2HH]
|
567 |
+
%78
|
568 |
+
[Sn-]
|
569 |
+
[11CH]
|
570 |
+
[PdH2]
|
571 |
+
0
|
572 |
+
[Os+6]
|
573 |
+
%79
|
574 |
+
[Mo+]
|
575 |
+
%80
|
576 |
+
[al]
|
577 |
+
[PbH2]
|
578 |
+
[64Cu]
|
579 |
+
[Cl]
|
580 |
+
[12CH3]
|
581 |
+
%81
|
582 |
+
[Tc+7]
|
583 |
+
[11c]
|
584 |
+
%82
|
585 |
+
[Li-]
|
586 |
+
[99Tc+5]
|
587 |
+
[He]
|
588 |
+
[12c]
|
589 |
+
[Kr]
|
590 |
+
[RuH+2]
|
591 |
+
[35Cl]
|
592 |
+
[Pd-2]
|
593 |
+
[GaH2]
|
594 |
+
[4H]
|
595 |
+
[Sg]
|
596 |
+
[Cu-2]
|
597 |
+
[Br+3]
|
598 |
+
%83
|
599 |
+
[37Cl]
|
600 |
+
[211At]
|
601 |
+
[IrH+2]
|
602 |
+
[Mt]
|
603 |
+
[Ir-2]
|
604 |
+
[In-]
|
605 |
+
[12cH]
|
606 |
+
[12CH2]
|
607 |
+
[RuH2]
|
608 |
+
[99Tc+7]
|
609 |
+
%84
|
610 |
+
[15n+]
|
611 |
+
[ClH2+2]
|
612 |
+
[16N]
|
613 |
+
[111In]
|
614 |
+
[Tc+]
|
615 |
+
[Ru-2]
|
616 |
+
[12CH]
|
617 |
+
[si+]
|
618 |
+
[Tc+6]
|
619 |
+
%85
|
620 |
+
%86
|
621 |
+
[90Y]
|
622 |
+
[Pd-]
|
623 |
+
[188Re]
|
624 |
+
[RuH+]
|
625 |
+
[NiH]
|
626 |
+
[SiH3-]
|
627 |
+
[14n]
|
628 |
+
[CH3]
|
629 |
+
[14N]
|
630 |
+
[10BH2]
|
631 |
+
%88
|
632 |
+
%89
|
633 |
+
%90
|
634 |
+
[34S]
|
635 |
+
[77Br]
|
636 |
+
[GaH]
|
637 |
+
[Br]
|
638 |
+
[Ge@]
|
639 |
+
[B@@H-]
|
640 |
+
[CuH]
|
641 |
+
[SiH4]
|
642 |
+
[3H-]
|
643 |
+
%87
|
644 |
+
%91
|
645 |
+
%92
|
646 |
+
[67Cu]
|
647 |
+
[I]
|
648 |
+
[177Lu]
|
649 |
+
[ReH]
|
650 |
+
[67Ga+3]
|
651 |
+
[Db]
|
652 |
+
[177Lu+3]
|
653 |
+
[AlH2-]
|
654 |
+
[Si+3]
|
655 |
+
[Ti-2]
|
656 |
+
[RuH+3]
|
657 |
+
[al+]
|
658 |
+
[68Ga]
|
659 |
+
[2H+]
|
660 |
+
[B@H-]
|
661 |
+
[WH2]
|
662 |
+
[OsH]
|
663 |
+
[Ir-3]
|
664 |
+
[AlH-]
|
665 |
+
[Bk]
|
666 |
+
[75Se]
|
667 |
+
[14C@]
|
668 |
+
[Pt-]
|
669 |
+
[N@@H+]
|
670 |
+
[Nb-]
|
671 |
+
[13NH2]
|
672 |
+
%93
|
673 |
+
[186Re]
|
674 |
+
[Tb+4]
|
675 |
+
[PtH]
|
676 |
+
[IrH2]
|
677 |
+
[Hg-2]
|
678 |
+
[AlH3-]
|
679 |
+
[PdH+]
|
680 |
+
[Md]
|
681 |
+
[RhH+2]
|
682 |
+
[11cH]
|
683 |
+
[Co-2]
|
684 |
+
[15N-]
|
685 |
+
[ZrH2]
|
686 |
+
%94
|
687 |
+
[Hg-]
|
688 |
+
[127I]
|
689 |
+
[AsH2+]
|
690 |
+
[MoH2]
|
691 |
+
[Te+4]
|
692 |
+
[14C@@]
|
693 |
+
[As+5]
|
694 |
+
[SnH+3]
|
695 |
+
[Ge@@]
|
696 |
+
[6Li+]
|
697 |
+
[WH]
|
698 |
+
[Ne]
|
699 |
+
[14NH2]
|
700 |
+
[14NH]
|
701 |
+
[12C@@H]
|
702 |
+
[Os+7]
|
703 |
+
[RhH]
|
704 |
+
[Al-3]
|
705 |
+
[SnH+]
|
706 |
+
[15NH3+]
|
707 |
+
[Zr+]
|
708 |
+
[197Hg+]
|
709 |
+
%95
|
710 |
+
%96
|
711 |
+
[90Y+3]
|
712 |
+
[Os-2]
|
713 |
+
[98Tc+5]
|
714 |
+
[15NH3]
|
715 |
+
[bH-]
|
716 |
+
[33P]
|
717 |
+
[Zr-2]
|
718 |
+
[15O]
|
719 |
+
[Rh-]
|
720 |
+
[PbH3]
|
721 |
+
[PH2]
|
722 |
+
[Ni-]
|
723 |
+
[CuH+]
|
724 |
+
%97
|
725 |
+
%98
|
726 |
+
%99
|
727 |
+
[Os+5]
|
728 |
+
[PtH+]
|
729 |
+
[ReH4]
|
730 |
+
[16NH]
|
731 |
+
[82Br]
|
732 |
+
[W-]
|
733 |
+
[18F-]
|
734 |
+
[15NH4+]
|
735 |
+
[Se+4]
|
736 |
+
[SeH-]
|
737 |
+
[SH4]
|
738 |
+
[67Cu+2]
|
739 |
+
[12C@H]
|
740 |
+
[AsH3]
|
741 |
+
[HgH]
|
742 |
+
[10B-]
|
743 |
+
[99Tc+6]
|
744 |
+
[117Sn+4]
|
745 |
+
[Te@]
|
746 |
+
[P@+]
|
747 |
+
[35SH]
|
748 |
+
[SeH+]
|
749 |
+
[Ni-2]
|
750 |
+
[Al-2]
|
751 |
+
[TeH2]
|
752 |
+
[Bh]
|
753 |
+
[99Tc+2]
|
754 |
+
[Os+8]
|
755 |
+
[PH-2]
|
756 |
+
[7Li+]
|
757 |
+
[14nH]
|
758 |
+
[AlH+2]
|
759 |
+
[18FH]
|
760 |
+
[SnH4]
|
761 |
+
[18O-2]
|
762 |
+
[IrH]
|
763 |
+
[13N]
|
764 |
+
[Te@@]
|
765 |
+
[Rh-3]
|
766 |
+
[15NH+]
|
767 |
+
[AsH3+]
|
768 |
+
[SeH2]
|
769 |
+
[AsH+]
|
770 |
+
[CoH2]
|
771 |
+
[16NH2]
|
772 |
+
[AsH-]
|
773 |
+
[203Hg+]
|
774 |
+
[P@@+]
|
775 |
+
[166Ho+3]
|
776 |
+
[60Co+3]
|
777 |
+
[13CH2-]
|
778 |
+
[SeH2+]
|
779 |
+
[75Br]
|
780 |
+
[TlH2]
|
781 |
+
[80Br]
|
782 |
+
[siH+]
|
783 |
+
[Ca+]
|
784 |
+
[153Sm+3]
|
785 |
+
[PdH]
|
786 |
+
[225Ac]
|
787 |
+
[13CH3-]
|
788 |
+
[AlH4-]
|
789 |
+
[FeH]
|
790 |
+
[13CH-]
|
791 |
+
[14C-]
|
792 |
+
[11C-]
|
793 |
+
[153Sm]
|
794 |
+
[Re-]
|
795 |
+
[te+]
|
796 |
+
[13CH4]
|
797 |
+
[ClH+2]
|
798 |
+
[8CH2]
|
799 |
+
[99Mo]
|
800 |
+
[ClH3+3]
|
801 |
+
[SbH3]
|
802 |
+
[25Mg+2]
|
803 |
+
[16N+]
|
804 |
+
[SnH2+]
|
805 |
+
[PH4]
|
806 |
+
[11C@H]
|
807 |
+
[122I]
|
808 |
+
[Re-2]
|
809 |
+
[RuH2+2]
|
810 |
+
[ZrH]
|
811 |
+
[Bi-]
|
812 |
+
[Pr+]
|
813 |
+
[Rn]
|
814 |
+
[Fr]
|
815 |
+
[36Cl]
|
816 |
+
[18o]
|
817 |
+
[YH]
|
818 |
+
[79Br]
|
819 |
+
[121I]
|
820 |
+
[113In+3]
|
821 |
+
[InH4-]
|
822 |
+
[TaH]
|
823 |
+
[RhH2]
|
824 |
+
[Ta-]
|
825 |
+
[67Ga]
|
826 |
+
[ZnH+]
|
827 |
+
[SnH2-]
|
828 |
+
[OsH2]
|
829 |
+
[16F]
|
830 |
+
[FeH2]
|
831 |
+
[14O]
|
832 |
+
[PbH2+2]
|
833 |
+
[BH2]
|
834 |
+
[6H]
|
835 |
+
[125Te]
|
836 |
+
[197Hg]
|
837 |
+
[TaH2]
|
838 |
+
[TaH3]
|
839 |
+
[76As]
|
840 |
+
[Nb-2]
|
841 |
+
[14N+]
|
842 |
+
[125I-]
|
843 |
+
[33S]
|
844 |
+
[IH2+2]
|
845 |
+
[NH2]
|
846 |
+
[PtH2]
|
847 |
+
[MnH]
|
848 |
+
[19C]
|
849 |
+
[17F]
|
850 |
+
[1H-]
|
851 |
+
[SnH4+2]
|
852 |
+
[Mn-2]
|
853 |
+
[15NH2+]
|
854 |
+
[TiH2]
|
855 |
+
[ReH7]
|
856 |
+
[Cd-2]
|
857 |
+
[Fe-3]
|
858 |
+
[SH2]
|
859 |
+
[17O-]
|
860 |
+
[siH-]
|
861 |
+
[CoH+]
|
862 |
+
[VH]
|
863 |
+
[10BH]
|
864 |
+
[Ru-3]
|
865 |
+
[13O]
|
866 |
+
[5H]
|
867 |
+
[CoH]
|
868 |
+
[PH5]
|
869 |
+
[15n-]
|
870 |
+
[153Gd]
|
871 |
+
[12C@]
|
872 |
+
[11CH3-]
|
873 |
+
[IrH3]
|
874 |
+
[RuH3]
|
875 |
+
[74Se]
|
876 |
+
[Se@]
|
877 |
+
[Hf+]
|
878 |
+
[77Se]
|
879 |
+
[166Ho]
|
880 |
+
[59Fe+2]
|
881 |
+
[203Hg]
|
882 |
+
[18OH-]
|
883 |
+
[8CH]
|
884 |
+
[12C@@]
|
885 |
+
[11CH4]
|
886 |
+
[15C]
|
887 |
+
[249Cf]
|
888 |
+
[PbH4]
|
889 |
+
[64Zn]
|
890 |
+
[PH3]
|
891 |
+
[99Tc+]
|
892 |
+
[14c-]
|
893 |
+
[149Pm]
|
894 |
+
[IrH4]
|
895 |
+
[Se@@]
|
896 |
+
[13OH]
|
897 |
+
[14CH3-]
|
898 |
+
[28Si]
|
899 |
+
[Rh-2]
|
900 |
+
[Fe-2]
|
901 |
+
[131I-]
|
902 |
+
[51Cr]
|
903 |
+
[62Cu+2]
|
904 |
+
[81Br]
|
905 |
+
[121Sb]
|
906 |
+
[7Li]
|
907 |
+
[89Zr+4]
|
908 |
+
[SbH3+]
|
909 |
+
[11C@@H]
|
910 |
+
[98Tc]
|
911 |
+
[59Fe+3]
|
912 |
+
[BiH2+]
|
913 |
+
[SbH+]
|
914 |
+
[TiH]
|
915 |
+
[14NH3]
|
916 |
+
[15OH]
|
917 |
+
[119Sn]
|
918 |
+
[201Hg]
|
919 |
+
[MnH+]
|
920 |
+
[201Tl]
|
921 |
+
[51Cr+3]
|
922 |
+
[123I-]
|
923 |
+
[MoH]
|
924 |
+
[AlH6-3]
|
925 |
+
[MnH2]
|
926 |
+
[WH3]
|
927 |
+
[213Bi+3]
|
928 |
+
[SnH2+2]
|
929 |
+
[123IH]
|
930 |
+
[13CH+]
|
931 |
+
[Zr-]
|
932 |
+
[74As]
|
933 |
+
[13C+]
|
934 |
+
[32P+]
|
935 |
+
[KrH]
|
936 |
+
[SiH+2]
|
937 |
+
[ClH3+2]
|
938 |
+
[13NH]
|
939 |
+
[9CH2]
|
940 |
+
[ZrH2+2]
|
941 |
+
[87Sr+2]
|
942 |
+
[35s]
|
943 |
+
[239Pu]
|
944 |
+
[198Au]
|
945 |
+
[241Am]
|
946 |
+
[203Hg+2]
|
947 |
+
[V+]
|
948 |
+
[YH2]
|
949 |
+
[SH5]
|
950 |
+
[195Pt]
|
951 |
+
[203Pb]
|
952 |
+
[RuH4]
|
953 |
+
[ThH2]
|
954 |
+
[AuH]
|
955 |
+
[66Ga+3]
|
956 |
+
[11B-]
|
957 |
+
[F]
|
958 |
+
[24Na+]
|
959 |
+
[85Sr+2]
|
960 |
+
[201Tl+]
|
961 |
+
[14CH4]
|
962 |
+
[32S]
|
963 |
+
[TeH2+]
|
964 |
+
[ClH2+3]
|
965 |
+
[AgH]
|
966 |
+
[Ge@H]
|
967 |
+
[44Ca+2]
|
968 |
+
[Os-]
|
969 |
+
[31P]
|
970 |
+
[15nH+]
|
971 |
+
[SbH4]
|
972 |
+
[TiH+]
|
973 |
+
[Ba+]
|
974 |
+
[57Co+2]
|
975 |
+
[Ta+]
|
976 |
+
[125IH]
|
977 |
+
[77As]
|
978 |
+
[129I]
|
979 |
+
[Fe-4]
|
980 |
+
[Ta-2]
|
981 |
+
[19O]
|
982 |
+
[12O]
|
983 |
+
[BiH3]
|
984 |
+
[237Np]
|
985 |
+
[252Cf]
|
986 |
+
[86Y]
|
987 |
+
[Cr-2]
|
988 |
+
[89Y]
|
989 |
+
[195Pt+2]
|
990 |
+
[si+2]
|
991 |
+
[58Fe+2]
|
992 |
+
[Hs]
|
993 |
+
[S@@H]
|
994 |
+
[OsH6]
|
995 |
+
[GdH2]
|
996 |
+
[IH3]
|
997 |
+
[8CH4]
|
998 |
+
[164Dy+3]
|
999 |
+
[47Ca+2]
|
1000 |
+
[57Co]
|
1001 |
+
[NbH2]
|
1002 |
+
[ReH2]
|
1003 |
+
[ZnH2]
|
1004 |
+
[CrH2]
|
1005 |
+
[17NH]
|
1006 |
+
[ZrH3]
|
1007 |
+
[RhH3]
|
1008 |
+
[12C-]
|
1009 |
+
[18O+]
|
1010 |
+
[Bi-2]
|
1011 |
+
[ClH4+3]
|
1012 |
+
[Ni-3]
|
1013 |
+
[Ag-]
|
1014 |
+
[111In-]
|
1015 |
+
[Mo-2]
|
1016 |
+
[55Fe+3]
|
1017 |
+
[204Hg+]
|
1018 |
+
[35Cl-]
|
1019 |
+
[211Pb]
|
1020 |
+
[75Ge]
|
1021 |
+
[8B]
|
1022 |
+
[TeH3]
|
1023 |
+
[SnH3+]
|
1024 |
+
[Zr-3]
|
1025 |
+
[28F]
|
1026 |
+
[249Bk]
|
1027 |
+
[169Yb]
|
1028 |
+
[34SH]
|
1029 |
+
[6Li]
|
1030 |
+
[94Tc]
|
1031 |
+
[197Au]
|
1032 |
+
[195Pt+4]
|
1033 |
+
[169Yb+3]
|
1034 |
+
[32Cl]
|
1035 |
+
[82Se]
|
1036 |
+
[159Gd+3]
|
1037 |
+
[213Bi]
|
1038 |
+
[CoH+2]
|
1039 |
+
[36S]
|
1040 |
+
[35P]
|
1041 |
+
[Ru-4]
|
1042 |
+
[Cr-3]
|
1043 |
+
[60Co]
|
1044 |
+
[1H+]
|
1045 |
+
[18CH2]
|
1046 |
+
[Cd-]
|
1047 |
+
[152Sm+3]
|
1048 |
+
[106Ru]
|
1049 |
+
[238Pu]
|
1050 |
+
[220Rn]
|
1051 |
+
[45Ca+2]
|
1052 |
+
[89Sr+2]
|
1053 |
+
[239Np]
|
1054 |
+
[90Sr+2]
|
1055 |
+
[137Cs+]
|
1056 |
+
[165Dy]
|
1057 |
+
[68GaH3]
|
1058 |
+
[65Zn+2]
|
1059 |
+
[89Zr]
|
1060 |
+
[BiH2+2]
|
1061 |
+
[62Cu]
|
1062 |
+
[165Dy+3]
|
1063 |
+
[238U]
|
1064 |
+
[105Rh+3]
|
1065 |
+
[70Zn]
|
1066 |
+
[12B]
|
1067 |
+
[12OH]
|
1068 |
+
[18CH]
|
1069 |
+
[17CH]
|
1070 |
+
[OsH3]
|
1071 |
+
[SbH-]
|
1072 |
+
[SH6]
|
1073 |
+
[AlH2-2]
|
1074 |
+
[42K]
|
1075 |
+
[76Br-]
|
1076 |
+
[71As]
|
1077 |
+
[NbH3]
|
1078 |
+
[ReH3]
|
1079 |
+
[OsH-]
|
1080 |
+
[WH4]
|
1081 |
+
[MoH3]
|
1082 |
+
[OsH4]
|
1083 |
+
[RuH6]
|
1084 |
+
[PtH3]
|
1085 |
+
[CuH2]
|
1086 |
+
[CoH3]
|
1087 |
+
[TiH4]
|
1088 |
+
[64Zn+2]
|
1089 |
+
[Si-2]
|
1090 |
+
[79BrH]
|
1091 |
+
[14CH2-]
|
1092 |
+
[PtH2+2]
|
1093 |
+
[Os-3]
|
1094 |
+
[29Si]
|
1095 |
+
[Ti-]
|
1096 |
+
[Se+6]
|
1097 |
+
[22Na+]
|
1098 |
+
[42K+]
|
1099 |
+
[131Cs+]
|
1100 |
+
[86Rb+]
|
1101 |
+
[134Cs+]
|
1102 |
+
[209Po]
|
1103 |
+
[208Po]
|
1104 |
+
[81Rb+]
|
1105 |
+
[203Tl+]
|
1106 |
+
[Zr-4]
|
1107 |
+
[148Sm]
|
1108 |
+
[147Sm]
|
1109 |
+
[37Cl-]
|
1110 |
+
[12CH4]
|
1111 |
+
[Ge@@H]
|
1112 |
+
[63Cu]
|
1113 |
+
[13CH2+]
|
1114 |
+
[AsH2-]
|
1115 |
+
[CeH]
|
1116 |
+
[SnH-]
|
1117 |
+
[UH]
|
1118 |
+
[9c]
|
1119 |
+
[21CH3]
|
1120 |
+
[TeH+]
|
1121 |
+
[57Co+3]
|
1122 |
+
[8BH2]
|
1123 |
+
[12BH2]
|
1124 |
+
[19BH2]
|
1125 |
+
[9BH2]
|
1126 |
+
[YbH2]
|
1127 |
+
[CrH+2]
|
1128 |
+
[208Bi]
|
1129 |
+
[152Gd]
|
1130 |
+
[61Cu]
|
1131 |
+
[115In]
|
1132 |
+
[60Co+2]
|
1133 |
+
[13NH2-]
|
1134 |
+
[120I]
|
1135 |
+
[18OH2]
|
1136 |
+
[75SeH]
|
1137 |
+
[SbH2+]
|
1138 |
+
[144Ce]
|
1139 |
+
[16n]
|
1140 |
+
[113In]
|
1141 |
+
[22nH]
|
1142 |
+
[129I-]
|
1143 |
+
[InH3]
|
1144 |
+
[32PH3]
|
1145 |
+
[234U]
|
1146 |
+
[235U]
|
1147 |
+
[59Fe]
|
1148 |
+
[82Rb+]
|
1149 |
+
[65Zn]
|
1150 |
+
[244Cm]
|
1151 |
+
[147Pm]
|
1152 |
+
[91Y]
|
1153 |
+
[237Pu]
|
1154 |
+
[231Pa]
|
1155 |
+
[253Cf]
|
1156 |
+
[127Te]
|
1157 |
+
[187Re]
|
1158 |
+
[236Np]
|
1159 |
+
[235Np]
|
1160 |
+
[72Zn]
|
1161 |
+
[253Es]
|
1162 |
+
[159Dy]
|
1163 |
+
[62Zn]
|
1164 |
+
[101Tc]
|
1165 |
+
[149Tb]
|
1166 |
+
[124I-]
|
1167 |
+
[SeH3+]
|
1168 |
+
[210Pb]
|
1169 |
+
[40K]
|
1170 |
+
[210Po]
|
1171 |
+
[214Pb]
|
1172 |
+
[218Po]
|
1173 |
+
[214Po]
|
1174 |
+
[7Be]
|
1175 |
+
[212Pb]
|
1176 |
+
[205Pb]
|
1177 |
+
[209Pb]
|
1178 |
+
[123Te]
|
1179 |
+
[202Pb]
|
1180 |
+
[72As]
|
1181 |
+
[201Pb]
|
1182 |
+
[70As]
|
1183 |
+
[73Ge]
|
1184 |
+
[200Pb]
|
1185 |
+
[198Pb]
|
1186 |
+
[66Ga]
|
1187 |
+
[73Se]
|
1188 |
+
[195Pb]
|
1189 |
+
[199Pb]
|
1190 |
+
[144Ce+3]
|
1191 |
+
[235U+2]
|
1192 |
+
[90Tc]
|
1193 |
+
[114In+3]
|
1194 |
+
[128I]
|
1195 |
+
[100Tc+]
|
1196 |
+
[82Br-]
|
1197 |
+
[191Pt+2]
|
1198 |
+
[191Pt+4]
|
1199 |
+
[193Pt+4]
|
1200 |
+
[31PH3]
|
1201 |
+
[125I+2]
|
1202 |
+
[131I+2]
|
1203 |
+
[125Te+4]
|
1204 |
+
[82Sr+2]
|
1205 |
+
[149Sm]
|
1206 |
+
[81BrH]
|
1207 |
+
[129Xe]
|
1208 |
+
[193Pt+2]
|
1209 |
+
[123I+2]
|
1210 |
+
[Cr-]
|
1211 |
+
[Co-]
|
1212 |
+
[227Th+4]
|
1213 |
+
[249Cf+3]
|
1214 |
+
[252Cf+3]
|
1215 |
+
[187Os]
|
1216 |
+
[16O-]
|
1217 |
+
[17O+]
|
1218 |
+
[16OH-]
|
1219 |
+
[98Tc+7]
|
1220 |
+
[58Co+2]
|
1221 |
+
[69Ga+3]
|
1222 |
+
[57Fe+2]
|
1223 |
+
[43K+]
|
1224 |
+
[16C]
|
1225 |
+
[52Fe+3]
|
1226 |
+
[SeH5]
|
1227 |
+
[194Pb]
|
1228 |
+
[196Pb]
|
1229 |
+
[197Pb]
|
1230 |
+
[213Pb]
|
1231 |
+
[9B]
|
1232 |
+
[19B]
|
1233 |
+
[11CH-]
|
1234 |
+
[9CH]
|
1235 |
+
[20OH]
|
1236 |
+
[25OH]
|
1237 |
+
[8cH]
|
1238 |
+
[TiH+3]
|
1239 |
+
[SnH6+3]
|
1240 |
+
[N@H+]
|
1241 |
+
[ZnH]
|
1242 |
+
[VH3]
|
1243 |
+
[52Mn+2]
|
1244 |
+
[64Ga]
|
1245 |
+
[13B]
|
1246 |
+
[216Bi]
|
1247 |
+
[117Sn+2]
|
1248 |
+
[232Th]
|
1249 |
+
[SnH+2]
|
1250 |
+
[BiH5]
|
1251 |
+
[77Kr]
|
1252 |
+
[103Cd]
|
1253 |
+
[62Ni]
|
1254 |
+
[LaH3]
|
1255 |
+
[SmH3]
|
1256 |
+
[EuH3]
|
1257 |
+
[MoH5]
|
1258 |
+
[64Ni]
|
1259 |
+
[66Zn]
|
1260 |
+
[68Zn]
|
1261 |
+
[186W]
|
1262 |
+
[FeH4]
|
1263 |
+
[MoH4]
|
1264 |
+
[HgH2]
|
1265 |
+
[15NH2-]
|
1266 |
+
[UH2]
|
1267 |
+
[204Hg]
|
1268 |
+
[GaH4-]
|
1269 |
+
[ThH4]
|
1270 |
+
[WH6]
|
1271 |
+
[PtH4]
|
1272 |
+
[VH2]
|
1273 |
+
[UH3]
|
1274 |
+
[FeH3]
|
1275 |
+
[RuH5]
|
1276 |
+
[BiH4]
|
1277 |
+
[80Br-]
|
1278 |
+
[CeH3]
|
1279 |
+
[37ClH]
|
1280 |
+
[157Gd+3]
|
1281 |
+
[205Tl]
|
1282 |
+
[203Tl]
|
1283 |
+
[62Cu+]
|
1284 |
+
[64Cu+]
|
1285 |
+
[61Cu+]
|
1286 |
+
[37SH2]
|
1287 |
+
[30Si]
|
1288 |
+
[28Al]
|
1289 |
+
[19OH2]
|
1290 |
+
[8He]
|
1291 |
+
[6He]
|
1292 |
+
[153Pm]
|
1293 |
+
[209Bi]
|
1294 |
+
[66Zn+2]
|
1295 |
+
[10CH4]
|
1296 |
+
[191Ir]
|
1297 |
+
[66Cu]
|
1298 |
+
[16O+]
|
1299 |
+
[25O]
|
1300 |
+
[10c]
|
1301 |
+
[Co-3]
|
1302 |
+
[Sn@@]
|
1303 |
+
[17OH-]
|
1304 |
+
[206Po]
|
1305 |
+
[204Po]
|
1306 |
+
[202Po]
|
1307 |
+
[201Po]
|
1308 |
+
[200Po]
|
1309 |
+
[199Po]
|
1310 |
+
[198Po]
|
1311 |
+
[197Po]
|
1312 |
+
[196Po]
|
1313 |
+
[195Po]
|
1314 |
+
[194Po]
|
1315 |
+
[193Po]
|
1316 |
+
[192Po]
|
1317 |
+
[191Po]
|
1318 |
+
[190Po]
|
1319 |
+
[217Po]
|
1320 |
+
[BiH4-]
|
1321 |
+
[TeH4]
|
1322 |
+
[222Ra]
|
1323 |
+
[62Ga]
|
1324 |
+
[39Ar]
|
1325 |
+
[144Sm]
|
1326 |
+
[58Fe]
|
1327 |
+
[153Eu]
|
1328 |
+
[85Rb]
|
1329 |
+
[171Yb]
|
1330 |
+
[172Yb]
|
1331 |
+
[114Cd]
|
1332 |
+
[51Fe]
|
1333 |
+
[142Ce]
|
1334 |
+
[207Tl]
|
1335 |
+
[92Mo]
|
1336 |
+
[115Sn]
|
1337 |
+
[140Ce]
|
1338 |
+
[202Hg]
|
1339 |
+
[180W]
|
1340 |
+
[182W]
|
1341 |
+
[183W]
|
1342 |
+
[184W]
|
1343 |
+
[96Mo]
|
1344 |
+
[47Ti]
|
1345 |
+
[111Cd]
|
1346 |
+
[143Nd]
|
1347 |
+
[145Nd]
|
1348 |
+
[126Te]
|
1349 |
+
[128Te]
|
1350 |
+
[130Te]
|
1351 |
+
[185Re]
|
1352 |
+
[97Mo]
|
1353 |
+
[98Mo]
|
1354 |
+
[183Re]
|
1355 |
+
[52V]
|
1356 |
+
[80Se]
|
1357 |
+
[87Kr]
|
1358 |
+
[137Xe]
|
1359 |
+
[196Au]
|
1360 |
+
[146Ce]
|
1361 |
+
[88Kr]
|
1362 |
+
[51Ti]
|
1363 |
+
[138Xe]
|
1364 |
+
[112Cd]
|
1365 |
+
[116Sn]
|
1366 |
+
[120Sn]
|
1367 |
+
[28SiH3]
|
1368 |
+
[35S-]
|
1369 |
+
[15NH-]
|
1370 |
+
[13CH3+]
|
1371 |
+
[34S+]
|
1372 |
+
[34s]
|
1373 |
+
[SiH4-]
|
1374 |
+
[100Tc+5]
|
1375 |
+
[NiH2+2]
|
1376 |
+
[239Th]
|
1377 |
+
[186Lu]
|
1378 |
+
[AuH3]
|
1379 |
+
[I@@-]
|
1380 |
+
[XeH2]
|
1381 |
+
[B+]
|
1382 |
+
[16CH2]
|
1383 |
+
[8C]
|
1384 |
+
[TaH5]
|
1385 |
+
[FeH4-]
|
1386 |
+
[19C@H]
|
1387 |
+
[10NH]
|
1388 |
+
[FeH6-3]
|
1389 |
+
[22CH]
|
1390 |
+
[25N]
|
1391 |
+
[25N+]
|
1392 |
+
[25N-]
|
1393 |
+
[21CH2]
|
1394 |
+
[18cH]
|
1395 |
+
[113I]
|
1396 |
+
[ScH3]
|
1397 |
+
[30PH3]
|
1398 |
+
[43Ca+2]
|
1399 |
+
[41Ca+2]
|
1400 |
+
[106Cd]
|
1401 |
+
[122Sn]
|
1402 |
+
[18CH3]
|
1403 |
+
[58Co+3]
|
1404 |
+
[98Tc+4]
|
1405 |
+
[70Ge]
|
1406 |
+
[76Ge]
|
1407 |
+
[108Cd]
|
1408 |
+
[116Cd]
|
1409 |
+
[130Xe]
|
1410 |
+
[94Mo]
|
1411 |
+
[124Sn]
|
1412 |
+
[186Os]
|
1413 |
+
[188Os]
|
1414 |
+
[190Os]
|
1415 |
+
[192Os]
|
1416 |
+
[106Pd]
|
1417 |
+
[110Pd]
|
1418 |
+
[120Te]
|
1419 |
+
[132Ba]
|
1420 |
+
[134Ba]
|
1421 |
+
[136Ba]
|
1422 |
+
[136Ce]
|
1423 |
+
[138Ce]
|
1424 |
+
[156Dy]
|
1425 |
+
[158Dy]
|
1426 |
+
[160Dy]
|
1427 |
+
[163Dy]
|
1428 |
+
[162Er]
|
1429 |
+
[164Er]
|
1430 |
+
[167Er]
|
1431 |
+
[176Hf]
|
1432 |
+
[26Mg]
|
1433 |
+
[144Nd]
|
1434 |
+
[150Nd]
|
1435 |
+
[41K]
|
1436 |
+
[46Ti]
|
1437 |
+
[48Ti]
|
1438 |
+
[49Ti]
|
1439 |
+
[50Ti]
|
1440 |
+
[170Yb]
|
1441 |
+
[173Yb]
|
1442 |
+
[91Zr]
|
1443 |
+
[92Zr]
|
1444 |
+
[96Zr]
|
1445 |
+
[34S-]
|
1446 |
+
[CuH2-]
|
1447 |
+
[38Cl]
|
1448 |
+
[25Mg]
|
1449 |
+
[51V]
|
1450 |
+
[93Nb]
|
1451 |
+
[95Mo]
|
1452 |
+
[45Sc]
|
1453 |
+
[123Sb]
|
1454 |
+
[139La]
|
1455 |
+
[9Be]
|
1456 |
+
[99Y+3]
|
1457 |
+
[99Y]
|
1458 |
+
[156Ho]
|
1459 |
+
[67Zn]
|
1460 |
+
[144Ce+4]
|
1461 |
+
[210Tl]
|
1462 |
+
[42Ca]
|
1463 |
+
[54Fe]
|
1464 |
+
[193Ir]
|
1465 |
+
[92Nb]
|
1466 |
+
[141Cs]
|
1467 |
+
[52Cr]
|
1468 |
+
[35ClH]
|
1469 |
+
[46Ca]
|
1470 |
+
[139Cs]
|
1471 |
+
[65Cu]
|
1472 |
+
[71Ga]
|
1473 |
+
[60Ni]
|
1474 |
+
[16NH3]
|
1475 |
+
[148Nd]
|
1476 |
+
[72Ge]
|
1477 |
+
[161Dy]
|
1478 |
+
[49Ca]
|
1479 |
+
[43Ca]
|
1480 |
+
[8Be]
|
1481 |
+
[48Ca]
|
1482 |
+
[44Ca]
|
1483 |
+
[120Xe]
|
1484 |
+
[80Rb]
|
1485 |
+
[215At]
|
1486 |
+
[180Re]
|
1487 |
+
[146Sm]
|
1488 |
+
[19Ne]
|
1489 |
+
[74Kr]
|
1490 |
+
[134La]
|
1491 |
+
[76Kr]
|
1492 |
+
[219Fr]
|
1493 |
+
[121Xe]
|
1494 |
+
[220Fr]
|
1495 |
+
[216At]
|
1496 |
+
[223Ac]
|
1497 |
+
[218At]
|
1498 |
+
[37Ar]
|
1499 |
+
[135I]
|
1500 |
+
[110Cd]
|
1501 |
+
[94Tc+7]
|
1502 |
+
[86Y+3]
|
1503 |
+
[135I-]
|
1504 |
+
[15O-2]
|
1505 |
+
[151Eu+3]
|
1506 |
+
[161Tb+3]
|
1507 |
+
[197Hg+2]
|
1508 |
+
[109Cd+2]
|
1509 |
+
[191Os+4]
|
1510 |
+
[170Tm+3]
|
1511 |
+
[205Bi+3]
|
1512 |
+
[233U+4]
|
1513 |
+
[126Sb+3]
|
1514 |
+
[127Sb+3]
|
1515 |
+
[132Cs+]
|
1516 |
+
[136Eu+3]
|
1517 |
+
[136Eu]
|
1518 |
+
[125Sn+4]
|
1519 |
+
[175Yb+3]
|
1520 |
+
[100Mo]
|
1521 |
+
[22Ne]
|
1522 |
+
[13c-]
|
1523 |
+
[13NH4+]
|
1524 |
+
[17C]
|
1525 |
+
[9C]
|
1526 |
+
[31S]
|
1527 |
+
[31SH]
|
1528 |
+
[133I]
|
1529 |
+
[126I]
|
1530 |
+
[36SH]
|
1531 |
+
[30S]
|
1532 |
+
[32SH]
|
1533 |
+
[19CH2]
|
1534 |
+
[19c]
|
1535 |
+
[18c]
|
1536 |
+
[15F]
|
1537 |
+
[10C]
|
1538 |
+
[RuH-]
|
1539 |
+
[62Zn+2]
|
1540 |
+
[32ClH]
|
1541 |
+
[33ClH]
|
1542 |
+
[78BrH]
|
1543 |
+
[12Li+]
|
1544 |
+
[12Li]
|
1545 |
+
[233Ra]
|
1546 |
+
[68Ge+4]
|
1547 |
+
[44Sc+3]
|
1548 |
+
[91Y+3]
|
1549 |
+
[106Ru+3]
|
1550 |
+
[PoH2]
|
1551 |
+
[AtH]
|
1552 |
+
[55Fe]
|
1553 |
+
[233U]
|
1554 |
+
[210PoH2]
|
1555 |
+
[230Th]
|
1556 |
+
[228Th]
|
1557 |
+
[222Rn]
|
1558 |
+
[35SH2]
|
1559 |
+
[227Th]
|
1560 |
+
[192Ir]
|
1561 |
+
[133Xe]
|
1562 |
+
[81Kr]
|
1563 |
+
[95Zr]
|
1564 |
+
[240Pu]
|
1565 |
+
[54Mn]
|
1566 |
+
[103Ru]
|
1567 |
+
[95Nb]
|
1568 |
+
[109Cd]
|
1569 |
+
[141Ce]
|
1570 |
+
[85Kr]
|
1571 |
+
[110Ag]
|
1572 |
+
[58Co]
|
1573 |
+
[241Pu]
|
1574 |
+
[234Th]
|
1575 |
+
[140La]
|
1576 |
+
[63Ni]
|
1577 |
+
[152Eu]
|
1578 |
+
[132IH]
|
1579 |
+
[226Rn]
|
1580 |
+
[154Eu]
|
1581 |
+
[36ClH]
|
1582 |
+
[228Ac]
|
1583 |
+
[155Eu]
|
1584 |
+
[106Rh]
|
1585 |
+
[243Am]
|
1586 |
+
[227Ac]
|
1587 |
+
[243Cm]
|
1588 |
+
[236U]
|
1589 |
+
[144Pr]
|
1590 |
+
[232U]
|
1591 |
+
[32SH2]
|
1592 |
+
[88Y]
|
1593 |
+
[82BrH]
|
1594 |
+
[135IH]
|
1595 |
+
[242Cm]
|
1596 |
+
[115Cd]
|
1597 |
+
[242Pu]
|
1598 |
+
[46Sc]
|
1599 |
+
[56Mn]
|
1600 |
+
[234Pa]
|
1601 |
+
[41Ar]
|
1602 |
+
[147Nd]
|
1603 |
+
[187W]
|
1604 |
+
[151Sm]
|
1605 |
+
[59Ni]
|
1606 |
+
[233Pa]
|
1607 |
+
[52Mn]
|
1608 |
+
[94Nb]
|
1609 |
+
[219Rn]
|
1610 |
+
[236Pu]
|
1611 |
+
[13NH3]
|
1612 |
+
[93Zr]
|
1613 |
+
[51Cr+6]
|
1614 |
+
[TlH3]
|
1615 |
+
[123Xe]
|
1616 |
+
[160Tb]
|
1617 |
+
[170Tm]
|
1618 |
+
[182Ta]
|
1619 |
+
[175Yb]
|
1620 |
+
[93Mo]
|
1621 |
+
[143Ce]
|
1622 |
+
[191Os]
|
1623 |
+
[126IH]
|
1624 |
+
[48V]
|
1625 |
+
[113Cd]
|
1626 |
+
[47Sc]
|
1627 |
+
[181Hf]
|
1628 |
+
[185W]
|
1629 |
+
[143Pr]
|
1630 |
+
[191Pt]
|
1631 |
+
[181W]
|
1632 |
+
[33PH3]
|
1633 |
+
[97Ru]
|
1634 |
+
[97Tc]
|
1635 |
+
[111Ag]
|
1636 |
+
[169Er]
|
1637 |
+
[107Pd]
|
1638 |
+
[103Ru+2]
|
1639 |
+
[34SH2]
|
1640 |
+
[137Ce]
|
1641 |
+
[242Am]
|
1642 |
+
[117SnH2]
|
1643 |
+
[57Ni]
|
1644 |
+
[239U]
|
1645 |
+
[60Cu]
|
1646 |
+
[250Cf]
|
1647 |
+
[193Au]
|
1648 |
+
[69Zn]
|
1649 |
+
[55Co]
|
1650 |
+
[139Ce]
|
1651 |
+
[127Xe]
|
1652 |
+
[159Gd]
|
1653 |
+
[56Co]
|
1654 |
+
[177Hf]
|
1655 |
+
[244Pu]
|
1656 |
+
[38ClH]
|
1657 |
+
[142Pr]
|
1658 |
+
[199Hg]
|
1659 |
+
[179Hf]
|
1660 |
+
[178Hf]
|
1661 |
+
[237U]
|
1662 |
+
[156Eu]
|
1663 |
+
[157Eu]
|
1664 |
+
[105Ru]
|
1665 |
+
[171Tm]
|
1666 |
+
[199Au]
|
1667 |
+
[155Sm]
|
1668 |
+
[80BrH]
|
1669 |
+
[108Ag]
|
1670 |
+
[128IH]
|
1671 |
+
[48Sc]
|
1672 |
+
[45Ti]
|
1673 |
+
[176Lu]
|
1674 |
+
[121SnH2]
|
1675 |
+
[148Pm]
|
1676 |
+
[57Fe]
|
1677 |
+
[10BH3]
|
1678 |
+
[96Tc]
|
1679 |
+
[133IH]
|
1680 |
+
[143Pm]
|
1681 |
+
[105Rh]
|
1682 |
+
[130IH]
|
1683 |
+
[134IH]
|
1684 |
+
[131IH]
|
1685 |
+
[71Zn]
|
1686 |
+
[105Ag]
|
1687 |
+
[97Zr]
|
1688 |
+
[235Pu]
|
1689 |
+
[231Th]
|
1690 |
+
[109Pd]
|
1691 |
+
[93Y]
|
1692 |
+
[190Ir]
|
1693 |
+
[135Xe]
|
1694 |
+
[53Mn]
|
1695 |
+
[134Ce]
|
1696 |
+
[234Np]
|
1697 |
+
[240Am]
|
1698 |
+
[246Cf]
|
1699 |
+
[240Cm]
|
1700 |
+
[241Cm]
|
1701 |
+
[226Th]
|
1702 |
+
[39ClH]
|
1703 |
+
[229Th]
|
1704 |
+
[245Cm]
|
1705 |
+
[240U]
|
1706 |
+
[240Np]
|
1707 |
+
[249Cm]
|
1708 |
+
[243Pu]
|
1709 |
+
[145Pm]
|
1710 |
+
[199Pt]
|
1711 |
+
[246Bk]
|
1712 |
+
[193Pt]
|
1713 |
+
[230U]
|
1714 |
+
[250Cm]
|
1715 |
+
[44Ti]
|
1716 |
+
[175Hf]
|
1717 |
+
[254Fm]
|
1718 |
+
[255Fm]
|
1719 |
+
[257Fm]
|
1720 |
+
[92Y]
|
1721 |
+
[188Ir]
|
1722 |
+
[171Lu]
|
1723 |
+
[257Md]
|
1724 |
+
[247Bk]
|
1725 |
+
[121IH]
|
1726 |
+
[250Bk]
|
1727 |
+
[179Lu]
|
1728 |
+
[224Ac]
|
1729 |
+
[195Hg]
|
1730 |
+
[244Am]
|
1731 |
+
[246Pu]
|
1732 |
+
[194Au]
|
1733 |
+
[252Fm]
|
1734 |
+
[173Hf]
|
1735 |
+
[246Cm]
|
1736 |
+
[135Ce]
|
1737 |
+
[49Cr]
|
1738 |
+
[248Cf]
|
1739 |
+
[247Cm]
|
1740 |
+
[248Cm]
|
1741 |
+
[174Ta]
|
1742 |
+
[176Ta]
|
1743 |
+
[154Tb]
|
1744 |
+
[172Ta]
|
1745 |
+
[177Ta]
|
1746 |
+
[175Ta]
|
1747 |
+
[180Ta]
|
1748 |
+
[158Tb]
|
1749 |
+
[115Ag]
|
1750 |
+
[189Os]
|
1751 |
+
[251Cf]
|
1752 |
+
[145Pr]
|
1753 |
+
[147Pr]
|
1754 |
+
[76BrH]
|
1755 |
+
[102Rh]
|
1756 |
+
[238Np]
|
1757 |
+
[185Os]
|
1758 |
+
[246Am]
|
1759 |
+
[233Np]
|
1760 |
+
[166Dy]
|
1761 |
+
[254Es]
|
1762 |
+
[244Cf]
|
1763 |
+
[193Os]
|
1764 |
+
[245Am]
|
1765 |
+
[245Bk]
|
1766 |
+
[239Am]
|
1767 |
+
[238Am]
|
1768 |
+
[97Nb]
|
1769 |
+
[245Pu]
|
1770 |
+
[254Cf]
|
1771 |
+
[188W]
|
1772 |
+
[250Es]
|
1773 |
+
[251Es]
|
1774 |
+
[237Am]
|
1775 |
+
[182Hf]
|
1776 |
+
[258Md]
|
1777 |
+
[232Np]
|
1778 |
+
[238Cm]
|
1779 |
+
[60Fe]
|
1780 |
+
[109Pd+2]
|
1781 |
+
[234Pu]
|
1782 |
+
[141Ce+3]
|
1783 |
+
[136Nd]
|
1784 |
+
[136Pr]
|
1785 |
+
[173Ta]
|
1786 |
+
[110Ru]
|
1787 |
+
[147Tb]
|
1788 |
+
[253Fm]
|
1789 |
+
[139Nd]
|
1790 |
+
[178Re]
|
1791 |
+
[177Re]
|
1792 |
+
[200Au]
|
1793 |
+
[182Re]
|
1794 |
+
[156Tb]
|
1795 |
+
[155Tb]
|
1796 |
+
[157Tb]
|
1797 |
+
[161Tb]
|
1798 |
+
[161Ho]
|
1799 |
+
[167Tm]
|
1800 |
+
[173Lu]
|
1801 |
+
[179Ta]
|
1802 |
+
[171Er]
|
1803 |
+
[44Sc]
|
1804 |
+
[49Sc]
|
1805 |
+
[49V]
|
1806 |
+
[51Mn]
|
1807 |
+
[90Nb]
|
1808 |
+
[88Nb]
|
1809 |
+
[88Zr]
|
1810 |
+
[36SH2]
|
1811 |
+
[174Yb]
|
1812 |
+
[178Lu]
|
1813 |
+
[179W]
|
1814 |
+
[83BrH]
|
1815 |
+
[107Cd]
|
1816 |
+
[75BrH]
|
1817 |
+
[62Co]
|
1818 |
+
[48Cr]
|
1819 |
+
[63Zn]
|
1820 |
+
[102Ag]
|
1821 |
+
[154Sm]
|
1822 |
+
[168Er]
|
1823 |
+
[65Ni]
|
1824 |
+
[137La]
|
1825 |
+
[187Ir]
|
1826 |
+
[144Pm]
|
1827 |
+
[146Pm]
|
1828 |
+
[160Gd]
|
1829 |
+
[166Yb]
|
1830 |
+
[162Dy]
|
1831 |
+
[47V]
|
1832 |
+
[141Nd]
|
1833 |
+
[141Sm]
|
1834 |
+
[166Er]
|
1835 |
+
[150Sm]
|
1836 |
+
[146Eu]
|
1837 |
+
[149Eu]
|
1838 |
+
[174Lu]
|
1839 |
+
[17NH3]
|
1840 |
+
[102Ru]
|
1841 |
+
[170Hf]
|
1842 |
+
[188Pt]
|
1843 |
+
[61Ni]
|
1844 |
+
[56Ni]
|
1845 |
+
[149Gd]
|
1846 |
+
[151Gd]
|
1847 |
+
[141Pm]
|
1848 |
+
[147Gd]
|
1849 |
+
[146Gd]
|
1850 |
+
[161Er]
|
1851 |
+
[103Ag]
|
1852 |
+
[145Eu]
|
1853 |
+
[153Tb]
|
1854 |
+
[155Dy]
|
1855 |
+
[184Re]
|
1856 |
+
[180Os]
|
1857 |
+
[182Os]
|
1858 |
+
[186Pt]
|
1859 |
+
[181Os]
|
1860 |
+
[181Re]
|
1861 |
+
[151Tb]
|
1862 |
+
[178Ta]
|
1863 |
+
[178W]
|
1864 |
+
[189Pt]
|
1865 |
+
[194Hg]
|
1866 |
+
[145Sm]
|
1867 |
+
[150Tb]
|
1868 |
+
[132La]
|
1869 |
+
[158Gd]
|
1870 |
+
[104Ag]
|
1871 |
+
[193Hg]
|
1872 |
+
[94Ru]
|
1873 |
+
[137Pr]
|
1874 |
+
[155Ho]
|
1875 |
+
[117Cd]
|
1876 |
+
[99Ru]
|
1877 |
+
[146Nd]
|
1878 |
+
[218Rn]
|
1879 |
+
[95Y]
|
1880 |
+
[79Kr]
|
1881 |
+
[120IH]
|
1882 |
+
[138Pr]
|
1883 |
+
[100Pd]
|
1884 |
+
[166Tm]
|
1885 |
+
[90Mo]
|
1886 |
+
[151Nd]
|
1887 |
+
[231U]
|
1888 |
+
[138Nd]
|
1889 |
+
[89Nb]
|
1890 |
+
[98Nb]
|
1891 |
+
[162Ho]
|
1892 |
+
[142Sm]
|
1893 |
+
[186Ta]
|
1894 |
+
[104Tc]
|
1895 |
+
[184Ta]
|
1896 |
+
[185Ta]
|
1897 |
+
[170Er]
|
1898 |
+
[107Rh]
|
1899 |
+
[131La]
|
1900 |
+
[169Lu]
|
1901 |
+
[74BrH]
|
1902 |
+
[150Pm]
|
1903 |
+
[172Tm]
|
1904 |
+
[197Pt]
|
1905 |
+
[230Pu]
|
1906 |
+
[170Lu]
|
1907 |
+
[86Zr]
|
1908 |
+
[176W]
|
1909 |
+
[177W]
|
1910 |
+
[101Pd]
|
1911 |
+
[105Pd]
|
1912 |
+
[108Pd]
|
1913 |
+
[149Nd]
|
1914 |
+
[164Ho]
|
1915 |
+
[159Ho]
|
1916 |
+
[167Ho]
|
1917 |
+
[176Yb]
|
1918 |
+
[156Sm]
|
1919 |
+
[77BrH]
|
1920 |
+
[189Re]
|
1921 |
+
[99Rh]
|
1922 |
+
[100Rh]
|
1923 |
+
[151Pm]
|
1924 |
+
[232Pa]
|
1925 |
+
[228Pa]
|
1926 |
+
[230Pa]
|
1927 |
+
[66Ni]
|
1928 |
+
[194Os]
|
1929 |
+
[135La]
|
1930 |
+
[138La]
|
1931 |
+
[141La]
|
1932 |
+
[142La]
|
1933 |
+
[195Ir]
|
1934 |
+
[96Nb]
|
1935 |
+
[157Ho]
|
1936 |
+
[183Hf]
|
1937 |
+
[162Tm]
|
1938 |
+
[172Er]
|
1939 |
+
[148Eu]
|
1940 |
+
[150Eu]
|
1941 |
+
[15CH4]
|
1942 |
+
[89Kr]
|
1943 |
+
[143La]
|
1944 |
+
[58Ni]
|
1945 |
+
[61Co]
|
1946 |
+
[158Eu]
|
1947 |
+
[165Er]
|
1948 |
+
[167Yb]
|
1949 |
+
[173Tm]
|
1950 |
+
[175Tm]
|
1951 |
+
[172Hf]
|
1952 |
+
[172Lu]
|
1953 |
+
[93Tc]
|
1954 |
+
[177Yb]
|
1955 |
+
[124IH]
|
1956 |
+
[194Ir]
|
1957 |
+
[147Eu]
|
1958 |
+
[101Mo]
|
1959 |
+
[180Hf]
|
1960 |
+
[189Ir]
|
1961 |
+
[87Y]
|
1962 |
+
[43Sc]
|
1963 |
+
[195Au]
|
1964 |
+
[112Ag]
|
1965 |
+
[84BrH]
|
1966 |
+
[106Ag]
|
1967 |
+
[109Ag]
|
1968 |
+
[101Rh]
|
1969 |
+
[162Yb]
|
1970 |
+
[228Rn]
|
1971 |
+
[139Pr]
|
1972 |
+
[94Y]
|
1973 |
+
[201Au]
|
1974 |
+
[40PH3]
|
1975 |
+
[110Ag+]
|
1976 |
+
[104Cd]
|
1977 |
+
[133Ba+2]
|
1978 |
+
[226Ac]
|
1979 |
+
[145Gd]
|
1980 |
+
[186Ir]
|
1981 |
+
[184Ir]
|
1982 |
+
[224Rn]
|
1983 |
+
[185Ir]
|
1984 |
+
[182Ir]
|
1985 |
+
[184Hf]
|
1986 |
+
[200Pt]
|
1987 |
+
[227Pa]
|
1988 |
+
[178Yb]
|
1989 |
+
[72Br-]
|
1990 |
+
[72BrH]
|
1991 |
+
[248Am]
|
1992 |
+
[238Th]
|
1993 |
+
[161Gd]
|
1994 |
+
[35S-2]
|
1995 |
+
[107Ag]
|
1996 |
+
[FeH6-4]
|
1997 |
+
[89Sr]
|
1998 |
+
[SnH3-]
|
1999 |
+
[SeH3]
|
2000 |
+
[TeH3+]
|
2001 |
+
[SbH4+]
|
2002 |
+
[AsH4+]
|
2003 |
+
[4He]
|
2004 |
+
[AsH3-]
|
2005 |
+
[1HH]
|
2006 |
+
[3H+]
|
2007 |
+
[82Rb]
|
2008 |
+
[85Sr]
|
2009 |
+
[90Sr]
|
2010 |
+
[137Cs]
|
2011 |
+
[133Ba]
|
2012 |
+
[131Cs]
|
2013 |
+
[SbH5]
|
2014 |
+
[224Ra]
|
2015 |
+
[22Na]
|
2016 |
+
[210Bi]
|
2017 |
+
[214Bi]
|
2018 |
+
[228Ra]
|
2019 |
+
[127Sb]
|
2020 |
+
[136Cs]
|
2021 |
+
[125Sb]
|
2022 |
+
[134Cs]
|
2023 |
+
[140Ba]
|
2024 |
+
[45Ca]
|
2025 |
+
[206Pb]
|
2026 |
+
[207Pb]
|
2027 |
+
[24Na]
|
2028 |
+
[86Rb]
|
2029 |
+
[212Bi]
|
2030 |
+
[208Pb]
|
2031 |
+
[124Sb]
|
2032 |
+
[204Pb]
|
2033 |
+
[44K]
|
2034 |
+
[129Te]
|
2035 |
+
[113Sn]
|
2036 |
+
[204Tl]
|
2037 |
+
[87Sr]
|
2038 |
+
[208Tl]
|
2039 |
+
[87Rb]
|
2040 |
+
[47Ca]
|
2041 |
+
[135Cs]
|
2042 |
+
[216Po]
|
2043 |
+
[137Ba]
|
2044 |
+
[207Bi]
|
2045 |
+
[212Po]
|
2046 |
+
[79Se]
|
2047 |
+
[223Ra]
|
2048 |
+
[86Sr]
|
2049 |
+
[122Sb]
|
2050 |
+
[26Al]
|
2051 |
+
[32Si]
|
2052 |
+
[126Sn]
|
2053 |
+
[225Ra]
|
2054 |
+
[114In]
|
2055 |
+
[72Ga]
|
2056 |
+
[132Te]
|
2057 |
+
[10Be]
|
2058 |
+
[125Sn]
|
2059 |
+
[73As]
|
2060 |
+
[206Bi]
|
2061 |
+
[117Sn]
|
2062 |
+
[40Ca]
|
2063 |
+
[41Ca]
|
2064 |
+
[89Rb]
|
2065 |
+
[116In]
|
2066 |
+
[129Sb]
|
2067 |
+
[91Sr]
|
2068 |
+
[71Ge]
|
2069 |
+
[139Ba]
|
2070 |
+
[69Ga]
|
2071 |
+
[120Sb]
|
2072 |
+
[121Sn]
|
2073 |
+
[123Sn]
|
2074 |
+
[131Te]
|
2075 |
+
[77Ge]
|
2076 |
+
[135Ba]
|
2077 |
+
[82Sr]
|
2078 |
+
[43K]
|
2079 |
+
[131Ba]
|
2080 |
+
[92Sr]
|
2081 |
+
[88Rb]
|
2082 |
+
[129Cs]
|
2083 |
+
[144Cs]
|
2084 |
+
[127Cs]
|
2085 |
+
[200Tl]
|
2086 |
+
[202Tl]
|
2087 |
+
[141Ba]
|
2088 |
+
[117Sb]
|
2089 |
+
[116Sb]
|
2090 |
+
[78As]
|
2091 |
+
[131Sb]
|
2092 |
+
[126Sb]
|
2093 |
+
[128Sb]
|
2094 |
+
[130Sb]
|
2095 |
+
[67Ge]
|
2096 |
+
[68Ge]
|
2097 |
+
[78Ge]
|
2098 |
+
[66Ge]
|
2099 |
+
[223Fr]
|
2100 |
+
[132Cs]
|
2101 |
+
[125Cs]
|
2102 |
+
[138Cs]
|
2103 |
+
[133Te]
|
2104 |
+
[84Rb]
|
2105 |
+
[83Rb]
|
2106 |
+
[81Rb]
|
2107 |
+
[142Ba]
|
2108 |
+
[200Bi]
|
2109 |
+
[115Sb]
|
2110 |
+
[194Tl]
|
2111 |
+
[70Se]
|
2112 |
+
[112In]
|
2113 |
+
[118Sb]
|
2114 |
+
[70Ga]
|
2115 |
+
[27Mg]
|
2116 |
+
[202Bi]
|
2117 |
+
[83Se]
|
2118 |
+
[9Li]
|
2119 |
+
[69As]
|
2120 |
+
[79Rb]
|
2121 |
+
[81Sr]
|
2122 |
+
[83Sr]
|
2123 |
+
[78Se]
|
2124 |
+
[109In]
|
2125 |
+
[29Al]
|
2126 |
+
[118Sn]
|
2127 |
+
[117In]
|
2128 |
+
[119Sb]
|
2129 |
+
[114Sn]
|
2130 |
+
[138Ba]
|
2131 |
+
[69Ge]
|
2132 |
+
[73Ga]
|
2133 |
+
[74Ge]
|
2134 |
+
[206Tl]
|
2135 |
+
[199Tl]
|
2136 |
+
[130Cs]
|
2137 |
+
[28Mg]
|
2138 |
+
[116Te]
|
2139 |
+
[112Sn]
|
2140 |
+
[126Ba]
|
2141 |
+
[211Bi]
|
2142 |
+
[81Se]
|
2143 |
+
[127Sn]
|
2144 |
+
[143Cs]
|
2145 |
+
[134Te]
|
2146 |
+
[80Sr]
|
2147 |
+
[45K]
|
2148 |
+
[215Po]
|
2149 |
+
[207Po]
|
2150 |
+
[111Sn]
|
2151 |
+
[211Po]
|
2152 |
+
[128Ba]
|
2153 |
+
[198Tl]
|
2154 |
+
[227Ra]
|
2155 |
+
[213Po]
|
2156 |
+
[220Ra]
|
2157 |
+
[128Sn]
|
2158 |
+
[203Po]
|
2159 |
+
[205Po]
|
2160 |
+
[65Ga]
|
2161 |
+
[197Tl]
|
2162 |
+
[88Sr]
|
2163 |
+
[110In]
|
2164 |
+
[31Si]
|
2165 |
+
[201Bi]
|
2166 |
+
[121Te]
|
2167 |
+
[205Bi]
|
2168 |
+
[203Bi]
|
2169 |
+
[195Tl]
|
2170 |
+
[209Tl]
|
2171 |
+
[110Sn]
|
2172 |
+
[222Fr]
|
2173 |
+
[207At]
|
2174 |
+
[119In]
|
2175 |
+
[As@]
|
2176 |
+
[129IH]
|
2177 |
+
[157Dy]
|
2178 |
+
[111IH]
|
2179 |
+
[230Ra]
|
2180 |
+
[144Pr+3]
|
2181 |
+
[SiH3+]
|
2182 |
+
[3He]
|
2183 |
+
[AsH5]
|
2184 |
+
[72Se]
|
2185 |
+
[95Tc]
|
2186 |
+
[103Pd]
|
2187 |
+
[121Sn+2]
|
2188 |
+
[211Rn]
|
2189 |
+
[38SH2]
|
2190 |
+
[127IH]
|
2191 |
+
[74Br-]
|
2192 |
+
[133I-]
|
2193 |
+
[100Tc+4]
|
2194 |
+
[100Tc]
|
2195 |
+
[36Cl-]
|
2196 |
+
[89Y+3]
|
2197 |
+
[104Rh]
|
2198 |
+
[152Sm]
|
2199 |
+
[226Ra]
|
2200 |
+
[19FH]
|
2201 |
+
[104Pd]
|
2202 |
+
[148Gd]
|
2203 |
+
[157Lu]
|
2204 |
+
[33SH2]
|
2205 |
+
[121I-]
|
2206 |
+
[17FH]
|
2207 |
+
[71Se]
|
2208 |
+
[157Sm]
|
2209 |
+
[148Tb]
|
2210 |
+
[164Dy]
|
2211 |
+
[15OH2]
|
2212 |
+
[15O+]
|
2213 |
+
[39K]
|
2214 |
+
[40Ar]
|
2215 |
+
[50Cr+3]
|
2216 |
+
[50Cr]
|
2217 |
+
[52Ti]
|
2218 |
+
[103Pd+2]
|
2219 |
+
[130Ba]
|
2220 |
+
[142Pm]
|
2221 |
+
[153Gd+3]
|
2222 |
+
[151Eu]
|
2223 |
+
[103Rh]
|
2224 |
+
[124Xe]
|
2225 |
+
[152Tb]
|
2226 |
+
[17OH2]
|
2227 |
+
[20Ne]
|
2228 |
+
[52Fe]
|
2229 |
+
[94Zr+4]
|
2230 |
+
[94Zr]
|
2231 |
+
[149Pr]
|
2232 |
+
[16OH2]
|
2233 |
+
[53Cr+6]
|
2234 |
+
[53Cr]
|
2235 |
+
[81Br-]
|
2236 |
+
[112Pd]
|
2237 |
+
[125Xe]
|
2238 |
+
[155Gd]
|
2239 |
+
[157Gd]
|
2240 |
+
[168Yb]
|
2241 |
+
[184Os]
|
2242 |
+
[166Tb]
|
2243 |
+
[221Fr]
|
2244 |
+
[212Ra]
|
2245 |
+
[75Br-]
|
2246 |
+
[79Br-]
|
2247 |
+
[113Ag]
|
2248 |
+
[23Na]
|
2249 |
+
[34Cl-]
|
2250 |
+
[34ClH]
|
2251 |
+
[38Cl-]
|
2252 |
+
[56Fe]
|
2253 |
+
[68Cu]
|
2254 |
+
[77Br-]
|
2255 |
+
[90Zr+4]
|
2256 |
+
[90Zr]
|
2257 |
+
[102Pd]
|
2258 |
+
[154Eu+3]
|
2259 |
+
[57Mn]
|
2260 |
+
[165Tm]
|
2261 |
+
[152Dy]
|
2262 |
+
[217At]
|
2263 |
+
[77se]
|
2264 |
+
[13cH-]
|
2265 |
+
[122Te]
|
2266 |
+
[156Gd]
|
2267 |
+
[124Te]
|
2268 |
+
[53Ni]
|
2269 |
+
[131Xe]
|
2270 |
+
[174Hf+4]
|
2271 |
+
[174Hf]
|
2272 |
+
[76Se]
|
2273 |
+
[168Tm]
|
2274 |
+
[167Dy]
|
2275 |
+
[154Gd]
|
2276 |
+
[95Ru]
|
2277 |
+
[210At]
|
2278 |
+
[85Br]
|
2279 |
+
[59Co]
|
2280 |
+
[122Xe]
|
2281 |
+
[27Al]
|
2282 |
+
[54Cr]
|
2283 |
+
[198Hg]
|
2284 |
+
[85Rb+]
|
2285 |
+
[214Tl]
|
2286 |
+
[229Rn]
|
2287 |
+
[218Pb]
|
2288 |
+
[218Bi]
|
2289 |
+
[167Tm+3]
|
2290 |
+
[18o+]
|
2291 |
+
[P@@H+]
|
2292 |
+
[P@H+]
|
2293 |
+
[13N+]
|
2294 |
+
[212Pb+2]
|
2295 |
+
[217Bi]
|
2296 |
+
[249Cf+2]
|
2297 |
+
[18OH3+]
|
2298 |
+
[90Sr-]
|
2299 |
+
[Cf+3]
|
2300 |
+
[200Hg]
|
2301 |
+
[86Tc]
|
2302 |
+
[141Pr+3]
|
2303 |
+
[141Pr]
|
2304 |
+
[16nH]
|
2305 |
+
[14NH4+]
|
2306 |
+
[132Xe]
|
2307 |
+
[83Kr]
|
2308 |
+
[70Zn+2]
|
2309 |
+
[137Ba+2]
|
2310 |
+
[36Ar]
|
2311 |
+
[38Ar]
|
2312 |
+
[21Ne]
|
2313 |
+
[126Xe]
|
2314 |
+
[136Xe]
|
2315 |
+
[128Xe]
|
2316 |
+
[134Xe]
|
2317 |
+
[84Kr]
|
2318 |
+
[86Kr]
|
2319 |
+
[78Kr]
|
2320 |
+
[80Kr]
|
2321 |
+
[82Kr]
|
2322 |
+
[67Zn+2]
|
2323 |
+
[65Cu+2]
|
2324 |
+
[110Te]
|
2325 |
+
[58Fe+3]
|
2326 |
+
[142Nd]
|
2327 |
+
[38K]
|
2328 |
+
[198Au+3]
|
2329 |
+
[122IH]
|
2330 |
+
[38PH3]
|
2331 |
+
[130I-]
|
2332 |
+
[40K+]
|
2333 |
+
[38K+]
|
2334 |
+
[28Mg+2]
|
2335 |
+
[208Tl+]
|
2336 |
+
[13OH2]
|
2337 |
+
[198Bi]
|
2338 |
+
[192Bi]
|
2339 |
+
[194Bi]
|
2340 |
+
[196Bi]
|
2341 |
+
[132I-]
|
2342 |
+
[83Sr+2]
|
2343 |
+
[169Er+3]
|
2344 |
+
[122I-]
|
2345 |
+
[120I-]
|
2346 |
+
[92Sr+2]
|
2347 |
+
[126I-]
|
2348 |
+
[24Mg]
|
2349 |
+
[84Sr]
|
2350 |
+
[118Pd+2]
|
2351 |
+
[118Pd]
|
2352 |
+
[AsH4]
|
2353 |
+
[127I-]
|
2354 |
+
[9C-]
|
2355 |
+
[11CH3+]
|
2356 |
+
[17B]
|
2357 |
+
[7B]
|
2358 |
+
[4HH]
|
2359 |
+
[18C-]
|
2360 |
+
[22CH3-]
|
2361 |
+
[22CH4]
|
2362 |
+
[17C-]
|
2363 |
+
[15CH3]
|
2364 |
+
[16CH3]
|
2365 |
+
[11NH3]
|
2366 |
+
[21NH3]
|
2367 |
+
[11N-]
|
2368 |
+
[11NH]
|
2369 |
+
[16CH]
|
2370 |
+
[17CH2]
|
2371 |
+
[99Ru+2]
|
2372 |
+
[181Ta+2]
|
2373 |
+
[181Ta]
|
2374 |
+
[20CH]
|
2375 |
+
[32PH2]
|
2376 |
+
[55Fe+2]
|
2377 |
+
[SH3]
|
2378 |
+
[S@H]
|
2379 |
+
[Mn-]
|
2380 |
+
[IH4]
|
2381 |
+
[ThH]
|
2382 |
+
[GaH-]
|
2383 |
+
[BiH+]
|
2384 |
+
[EuH2]
|
2385 |
+
[FeH4-3]
|
2386 |
+
[FeH6]
|
2387 |
+
[IH5]
|
2388 |
+
[NiH+]
|
2389 |
+
[SrH2]
|
2390 |
+
[VH4]
|
2391 |
+
[YH3]
|
2392 |
+
[seH+]
|
2393 |
+
<unk>
|
models/smi_ssed/load.py
ADDED
@@ -0,0 +1,550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
PATTERN = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"
|
2 |
+
# Deep learning
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import torch.backends.cudnn as cudnn
|
7 |
+
|
8 |
+
# Tokenizer
|
9 |
+
from transformers import BertTokenizer
|
10 |
+
|
11 |
+
# Mamba
|
12 |
+
from mamba_ssm.models.mixer_seq_simple import MixerModel
|
13 |
+
|
14 |
+
# Data
|
15 |
+
import pandas as pd
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
# Chemistry
|
19 |
+
from rdkit import Chem
|
20 |
+
from rdkit.Chem import PandasTools
|
21 |
+
from rdkit.Chem import Descriptors
|
22 |
+
PandasTools.RenderImagesInAllDataFrames(True)
|
23 |
+
|
24 |
+
# Standard library
|
25 |
+
import regex as re
|
26 |
+
import random
|
27 |
+
import os
|
28 |
+
import gc
|
29 |
+
from tqdm import tqdm
|
30 |
+
from huggingface_hub import hf_hub_download
|
31 |
+
tqdm.pandas()
|
32 |
+
|
33 |
+
|
34 |
+
# function to canonicalize SMILES
|
35 |
+
def normalize_smiles(smi, canonical=True, isomeric=False):
|
36 |
+
try:
|
37 |
+
normalized = Chem.MolToSmiles(
|
38 |
+
Chem.MolFromSmiles(smi), canonical=canonical, isomericSmiles=isomeric
|
39 |
+
)
|
40 |
+
except:
|
41 |
+
normalized = None
|
42 |
+
return normalized
|
43 |
+
|
44 |
+
|
45 |
+
class MolTranBertTokenizer(BertTokenizer):
|
46 |
+
def __init__(self, vocab_file: str = '',
|
47 |
+
do_lower_case=False,
|
48 |
+
unk_token='<pad>',
|
49 |
+
sep_token='<eos>',
|
50 |
+
pad_token='<pad>',
|
51 |
+
cls_token='<bos>',
|
52 |
+
mask_token='<mask>',
|
53 |
+
**kwargs):
|
54 |
+
super().__init__(vocab_file,
|
55 |
+
unk_token=unk_token,
|
56 |
+
sep_token=sep_token,
|
57 |
+
pad_token=pad_token,
|
58 |
+
cls_token=cls_token,
|
59 |
+
mask_token=mask_token,
|
60 |
+
**kwargs)
|
61 |
+
|
62 |
+
self.regex_tokenizer = re.compile(PATTERN)
|
63 |
+
self.wordpiece_tokenizer = None
|
64 |
+
self.basic_tokenizer = None
|
65 |
+
with open(vocab_file) as f:
|
66 |
+
self.padding_idx = f.readlines().index(pad_token+'\n')
|
67 |
+
|
68 |
+
def _tokenize(self, text):
|
69 |
+
split_tokens = self.regex_tokenizer.findall(text)
|
70 |
+
return split_tokens
|
71 |
+
|
72 |
+
def convert_idx_to_tokens(self, idx_tensor):
|
73 |
+
tokens = [self.convert_ids_to_tokens(idx) for idx in idx_tensor.tolist()]
|
74 |
+
return tokens
|
75 |
+
|
76 |
+
def convert_tokens_to_string(self, tokens):
|
77 |
+
stopwords = ['<bos>', '<eos>']
|
78 |
+
clean_tokens = [word for word in tokens if word not in stopwords]
|
79 |
+
out_string = ''.join(clean_tokens)
|
80 |
+
return out_string
|
81 |
+
|
82 |
+
def get_padding_idx(self):
|
83 |
+
return self.padding_idx
|
84 |
+
|
85 |
+
def idx_to_smiles(self, torch_model, idx):
|
86 |
+
'''Convert tokens idx back to SMILES text'''
|
87 |
+
rev_tokens = torch_model.tokenizer.convert_idx_to_tokens(idx)
|
88 |
+
flat_list_tokens = [item for sublist in rev_tokens for item in sublist]
|
89 |
+
decoded_smiles = torch_model.tokenizer.convert_tokens_to_string(flat_list_tokens)
|
90 |
+
return decoded_smiles
|
91 |
+
|
92 |
+
|
93 |
+
class AutoEncoderLayer(nn.Module):
|
94 |
+
|
95 |
+
def __init__(self, feature_size, latent_size):
|
96 |
+
super().__init__()
|
97 |
+
self.encoder = self.Encoder(feature_size, latent_size)
|
98 |
+
self.decoder = self.Decoder(feature_size, latent_size)
|
99 |
+
|
100 |
+
class Encoder(nn.Module):
|
101 |
+
|
102 |
+
def __init__(self, feature_size, latent_size):
|
103 |
+
super().__init__()
|
104 |
+
self.is_cuda_available = torch.cuda.is_available()
|
105 |
+
self.fc1 = nn.Linear(feature_size, latent_size)
|
106 |
+
self.ln_f = nn.LayerNorm(latent_size)
|
107 |
+
self.lat = nn.Linear(latent_size, latent_size, bias=False)
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
if self.is_cuda_available:
|
111 |
+
self.fc1.cuda()
|
112 |
+
self.ln_f.cuda()
|
113 |
+
self.lat.cuda()
|
114 |
+
x = x.cuda()
|
115 |
+
x = F.gelu(self.fc1(x))
|
116 |
+
x = self.ln_f(x)
|
117 |
+
x = self.lat(x)
|
118 |
+
return x # -> (N, D)
|
119 |
+
|
120 |
+
class Decoder(nn.Module):
|
121 |
+
|
122 |
+
def __init__(self, feature_size, latent_size):
|
123 |
+
super().__init__()
|
124 |
+
self.is_cuda_available = torch.cuda.is_available()
|
125 |
+
self.fc1 = nn.Linear(latent_size, latent_size)
|
126 |
+
self.ln_f = nn.LayerNorm(latent_size)
|
127 |
+
self.rec = nn.Linear(latent_size, feature_size, bias=False)
|
128 |
+
|
129 |
+
def forward(self, x):
|
130 |
+
if self.is_cuda_available:
|
131 |
+
self.fc1.cuda()
|
132 |
+
self.ln_f.cuda()
|
133 |
+
self.rec.cuda()
|
134 |
+
x = x.cuda()
|
135 |
+
x = F.gelu(self.fc1(x))
|
136 |
+
x = self.ln_f(x)
|
137 |
+
x = self.rec(x)
|
138 |
+
return x # -> (N, L*D)
|
139 |
+
|
140 |
+
|
141 |
+
class LangLayer(nn.Module):
|
142 |
+
def __init__(self, n_embd, n_vocab):
|
143 |
+
super().__init__()
|
144 |
+
self.is_cuda_available = torch.cuda.is_available()
|
145 |
+
self.embed = nn.Linear(n_embd, n_embd)
|
146 |
+
self.ln_f = nn.LayerNorm(n_embd)
|
147 |
+
self.head = nn.Linear(n_embd, n_vocab, bias=False)
|
148 |
+
def forward(self, tensor):
|
149 |
+
if self.is_cuda_available:
|
150 |
+
self.embed.cuda()
|
151 |
+
self.ln_f.cuda()
|
152 |
+
self.head.cuda()
|
153 |
+
tensor = tensor.cuda()
|
154 |
+
tensor = self.embed(tensor)
|
155 |
+
tensor = F.gelu(tensor)
|
156 |
+
tensor = self.ln_f(tensor)
|
157 |
+
tensor = self.head(tensor)
|
158 |
+
return tensor
|
159 |
+
|
160 |
+
|
161 |
+
class Net(nn.Module):
|
162 |
+
|
163 |
+
def __init__(self, smiles_embed_dim, n_output=1, dropout=0.2):
|
164 |
+
super().__init__()
|
165 |
+
self.desc_skip_connection = True
|
166 |
+
self.fc1 = nn.Linear(smiles_embed_dim, smiles_embed_dim)
|
167 |
+
self.dropout1 = nn.Dropout(dropout)
|
168 |
+
self.relu1 = nn.GELU()
|
169 |
+
self.fc2 = nn.Linear(smiles_embed_dim, smiles_embed_dim)
|
170 |
+
self.dropout2 = nn.Dropout(dropout)
|
171 |
+
self.relu2 = nn.GELU()
|
172 |
+
self.final = nn.Linear(smiles_embed_dim, n_output)
|
173 |
+
|
174 |
+
def forward(self, smiles_emb, multitask=False):
|
175 |
+
x_out = self.fc1(smiles_emb)
|
176 |
+
x_out = self.dropout1(x_out)
|
177 |
+
x_out = self.relu1(x_out)
|
178 |
+
|
179 |
+
if self.desc_skip_connection is True:
|
180 |
+
x_out = x_out + smiles_emb
|
181 |
+
|
182 |
+
z = self.fc2(x_out)
|
183 |
+
z = self.dropout2(z)
|
184 |
+
z = self.relu2(z)
|
185 |
+
if self.desc_skip_connection is True:
|
186 |
+
z = self.final(z + x_out)
|
187 |
+
else:
|
188 |
+
z = self.final(z)
|
189 |
+
|
190 |
+
if multitask:
|
191 |
+
return F.sigmoid(z)
|
192 |
+
return z
|
193 |
+
|
194 |
+
|
195 |
+
class MolEncoder(nn.Module):
|
196 |
+
|
197 |
+
def __init__(self, config, n_vocab):
|
198 |
+
super().__init__()
|
199 |
+
|
200 |
+
self.config = config
|
201 |
+
self.mamba = MixerModel(
|
202 |
+
d_model=config['n_embd'],
|
203 |
+
n_layer=config['n_layer'],
|
204 |
+
ssm_cfg=dict(
|
205 |
+
d_state=config['d_state'],
|
206 |
+
d_conv=config['d_conv'],
|
207 |
+
expand=config['expand_factor'],
|
208 |
+
dt_rank=config['dt_rank'],
|
209 |
+
dt_min=config['dt_min'],
|
210 |
+
dt_max=config['dt_max'],
|
211 |
+
dt_init=config['dt_init'],
|
212 |
+
dt_scale=config['dt_scale'],
|
213 |
+
dt_init_floor=config['dt_init_floor'],
|
214 |
+
conv_bias=bool(config['conv_bias']),
|
215 |
+
bias=bool(config['bias']),
|
216 |
+
),
|
217 |
+
vocab_size=n_vocab,
|
218 |
+
rms_norm=False,
|
219 |
+
fused_add_norm=False,
|
220 |
+
)
|
221 |
+
|
222 |
+
# classification
|
223 |
+
self.lang_model = LangLayer(config['n_embd'], n_vocab)
|
224 |
+
|
225 |
+
def forward(self, idx, mask):
|
226 |
+
x = self.mamba(idx)
|
227 |
+
|
228 |
+
# add padding
|
229 |
+
token_embeddings = x
|
230 |
+
input_mask_expanded = mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
231 |
+
mask_embeddings = (token_embeddings * input_mask_expanded)
|
232 |
+
token_embeddings = F.pad(mask_embeddings, pad=(0, 0, 0, self.config['max_len'] - mask_embeddings.shape[1]), value=0)
|
233 |
+
|
234 |
+
return token_embeddings
|
235 |
+
|
236 |
+
|
237 |
+
class MoLDecoder(nn.Module):
|
238 |
+
|
239 |
+
def __init__(self, n_vocab, max_len, n_embd, n_gpu=None):
|
240 |
+
super(MoLDecoder, self).__init__()
|
241 |
+
|
242 |
+
self.max_len = max_len
|
243 |
+
self.n_embd = n_embd
|
244 |
+
self.n_gpu = n_gpu
|
245 |
+
self.autoencoder = AutoEncoderLayer(n_embd*max_len, n_embd)
|
246 |
+
self.lm_head = LangLayer(n_embd, n_vocab)
|
247 |
+
|
248 |
+
|
249 |
+
class Smi_ssed(nn.Module):
|
250 |
+
"""granite.materials.smi-ssed 336M Parameters"""
|
251 |
+
|
252 |
+
def __init__(self, tokenizer, config=None):
|
253 |
+
super(Smi_ssed, self).__init__()
|
254 |
+
|
255 |
+
# configuration
|
256 |
+
self.config = config
|
257 |
+
self.tokenizer = tokenizer
|
258 |
+
self.padding_idx = tokenizer.get_padding_idx()
|
259 |
+
self.n_vocab = len(self.tokenizer.vocab)
|
260 |
+
self.is_cuda_available = torch.cuda.is_available()
|
261 |
+
|
262 |
+
# instantiate modules
|
263 |
+
if self.config:
|
264 |
+
self.encoder = MolEncoder(self.config, self.n_vocab)
|
265 |
+
self.decoder = MoLDecoder(self.n_vocab, self.config['max_len'], self.config['n_embd'])
|
266 |
+
self.net = Net(self.config['n_embd'], n_output=self.config['n_output'], dropout=self.config['d_dropout'])
|
267 |
+
|
268 |
+
def load_checkpoint(self, ckpt_path):
|
269 |
+
# load checkpoint file
|
270 |
+
checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
|
271 |
+
|
272 |
+
# load hyparameters
|
273 |
+
self.config = checkpoint['hparams']
|
274 |
+
self.max_len = self.config['max_len']
|
275 |
+
self.n_embd = self.config['n_embd']
|
276 |
+
self._set_seed(self.config['seed'])
|
277 |
+
|
278 |
+
# instantiate modules
|
279 |
+
self.encoder = MolEncoder(self.config, self.n_vocab)
|
280 |
+
self.decoder = MoLDecoder(self.n_vocab, self.max_len, self.n_embd)
|
281 |
+
self.net = Net(self.n_embd, n_output=self.config['n_output'] if 'n_output' in self.config else 1, dropout=self.config['d_dropout'])
|
282 |
+
|
283 |
+
# load weights
|
284 |
+
self.load_state_dict(checkpoint['MODEL_STATE'], strict=False)
|
285 |
+
|
286 |
+
# load RNG states each time the model and states are loaded from checkpoint
|
287 |
+
if 'rng' in self.config:
|
288 |
+
rng = self.config['rng']
|
289 |
+
for key, value in rng.items():
|
290 |
+
if key =='torch_state':
|
291 |
+
torch.set_rng_state(value.cpu())
|
292 |
+
elif key =='cuda_state':
|
293 |
+
torch.cuda.set_rng_state(value.cpu())
|
294 |
+
elif key =='numpy_state':
|
295 |
+
np.random.set_state(value)
|
296 |
+
elif key =='python_state':
|
297 |
+
random.setstate(value)
|
298 |
+
else:
|
299 |
+
print('unrecognized state')
|
300 |
+
|
301 |
+
def _init_weights(self, module):
|
302 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
303 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
304 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
305 |
+
module.bias.data.zero_()
|
306 |
+
elif isinstance(module, nn.LayerNorm):
|
307 |
+
module.bias.data.zero_()
|
308 |
+
module.weight.data.fill_(1.0)
|
309 |
+
|
310 |
+
def _set_seed(self, value):
|
311 |
+
print('Random Seed:', value)
|
312 |
+
random.seed(value)
|
313 |
+
torch.manual_seed(value)
|
314 |
+
torch.cuda.manual_seed(value)
|
315 |
+
torch.cuda.manual_seed_all(value)
|
316 |
+
np.random.seed(value)
|
317 |
+
cudnn.deterministic = True
|
318 |
+
cudnn.benchmark = False
|
319 |
+
|
320 |
+
def forward(self, smiles, batch_size=100):
|
321 |
+
return self.decode(self.encode(smiles, batch_size=batch_size, return_torch=True))
|
322 |
+
|
323 |
+
def tokenize(self, smiles):
|
324 |
+
"""Tokenize a string into tokens."""
|
325 |
+
if isinstance(smiles, str):
|
326 |
+
batch = [smiles]
|
327 |
+
else:
|
328 |
+
batch = smiles
|
329 |
+
|
330 |
+
tokens = self.tokenizer(
|
331 |
+
batch,
|
332 |
+
padding=True,
|
333 |
+
truncation=True,
|
334 |
+
add_special_tokens=True,
|
335 |
+
return_tensors="pt",
|
336 |
+
max_length=self.max_len,
|
337 |
+
)
|
338 |
+
|
339 |
+
idx = tokens['input_ids'].clone().detach()
|
340 |
+
mask = tokens['attention_mask'].clone().detach()
|
341 |
+
|
342 |
+
if self.is_cuda_available:
|
343 |
+
return idx.cuda(), mask.cuda()
|
344 |
+
|
345 |
+
return idx, mask
|
346 |
+
|
347 |
+
def extract_all(self, smiles):
|
348 |
+
"""Extract all elements from each part of smi-ssed. Be careful."""
|
349 |
+
# evaluation mode
|
350 |
+
self.encoder.eval()
|
351 |
+
self.decoder.eval()
|
352 |
+
if self.is_cuda_available:
|
353 |
+
self.encoder.cuda()
|
354 |
+
self.decoder.cuda()
|
355 |
+
|
356 |
+
# handle single str or a list of str
|
357 |
+
smiles = pd.Series(smiles) if isinstance(smiles, str) else pd.Series(list(smiles))
|
358 |
+
|
359 |
+
# SMILES normalization
|
360 |
+
smiles = smiles.apply(normalize_smiles)
|
361 |
+
null_idx = smiles[smiles.isnull()].index.to_list() # keep track of SMILES that cannot normalize
|
362 |
+
smiles = smiles.dropna()
|
363 |
+
|
364 |
+
# tokenizer
|
365 |
+
idx, mask = self.tokenize(smiles)
|
366 |
+
|
367 |
+
###########
|
368 |
+
# Encoder #
|
369 |
+
###########
|
370 |
+
# encoder forward
|
371 |
+
x = self.encoder.mamba(idx)
|
372 |
+
|
373 |
+
# mean pooling
|
374 |
+
token_embeddings = x
|
375 |
+
input_mask_expanded = mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
376 |
+
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
|
377 |
+
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
378 |
+
true_set = sum_embeddings / sum_mask # DO NOT USE THIS FOR DOWNSTREAM TASKS, USE `pred_set` INSTEAD
|
379 |
+
|
380 |
+
# add padding
|
381 |
+
mask_embeddings = (token_embeddings * input_mask_expanded)
|
382 |
+
token_embeddings = F.pad(mask_embeddings, pad=(0, 0, 0, self.max_len - mask_embeddings.shape[1]), value=0)
|
383 |
+
idx = F.pad(idx, pad=(0, self.max_len - idx.shape[1], 0, 0), value=2)
|
384 |
+
|
385 |
+
true_ids = idx
|
386 |
+
true_cte = token_embeddings
|
387 |
+
true_cte = true_cte.view(-1, self.max_len*self.n_embd)
|
388 |
+
|
389 |
+
###########
|
390 |
+
# Decoder #
|
391 |
+
###########
|
392 |
+
# CTE autoencoder
|
393 |
+
pred_set = self.decoder.autoencoder.encoder(true_cte)
|
394 |
+
pred_cte = self.decoder.autoencoder.decoder(pred_set)
|
395 |
+
|
396 |
+
# reconstruct tokens
|
397 |
+
pred_ids = self.decoder.lm_head(pred_cte.view(-1, self.max_len, self.n_embd))
|
398 |
+
pred_ids = torch.argmax(pred_ids, axis=-1)
|
399 |
+
|
400 |
+
# replacing null SMILES with NaN values
|
401 |
+
for idx in null_idx:
|
402 |
+
true_ids = true_ids.tolist()
|
403 |
+
pred_ids = pred_ids.tolist()
|
404 |
+
true_cte = true_cte.tolist()
|
405 |
+
pred_cte = pred_cte.tolist()
|
406 |
+
true_set = true_set.tolist()
|
407 |
+
pred_set = pred_set.tolist()
|
408 |
+
|
409 |
+
true_ids.insert(idx, np.array([np.nan]*self.config['max_len']))
|
410 |
+
pred_ids.insert(idx, np.array([np.nan]*self.config['max_len']))
|
411 |
+
true_cte.insert(idx, np.array([np.nan] * (self.config['max_len']*self.config['n_embd'])))
|
412 |
+
pred_cte.insert(idx, np.array([np.nan] * (self.config['max_len']*self.config['n_embd'])))
|
413 |
+
true_set.insert(idx, np.array([np.nan]*self.config['n_embd']))
|
414 |
+
pred_set.insert(idx, np.array([np.nan]*self.config['n_embd']))
|
415 |
+
|
416 |
+
if len(null_idx) > 0:
|
417 |
+
true_ids = torch.tensor(true_ids)
|
418 |
+
pred_ids = torch.tensor(pred_ids)
|
419 |
+
true_cte = torch.tensor(true_cte)
|
420 |
+
pred_cte = torch.tensor(pred_cte)
|
421 |
+
true_set = torch.tensor(true_set)
|
422 |
+
pred_set = torch.tensor(pred_set)
|
423 |
+
|
424 |
+
return ((true_ids, pred_ids), # tokens
|
425 |
+
(true_cte, pred_cte), # token embeddings
|
426 |
+
(true_set, pred_set)) # smiles embeddings
|
427 |
+
|
428 |
+
def extract_embeddings(self, smiles):
|
429 |
+
"""Extract token and SMILES embeddings."""
|
430 |
+
# evaluation mode
|
431 |
+
self.encoder.eval()
|
432 |
+
if self.is_cuda_available:
|
433 |
+
self.encoder.cuda()
|
434 |
+
|
435 |
+
# tokenizer
|
436 |
+
idx, mask = self.tokenize(smiles)
|
437 |
+
|
438 |
+
# encoder forward
|
439 |
+
token_embeddings = self.encoder(idx, mask)
|
440 |
+
|
441 |
+
# aggregate token embeddings (similar to mean pooling)
|
442 |
+
# CAUTION: use the embeddings from the autoencoder.
|
443 |
+
smiles_embeddings = self.decoder.autoencoder.encoder(token_embeddings.view(-1, self.max_len*self.n_embd))
|
444 |
+
|
445 |
+
# add padding
|
446 |
+
idx = F.pad(idx, pad=(0, self.max_len - idx.shape[1], 0, 0), value=self.padding_idx)
|
447 |
+
|
448 |
+
return idx, token_embeddings, smiles_embeddings
|
449 |
+
|
450 |
+
def encode(self, smiles, useCuda=False, batch_size=100, return_torch=False):
|
451 |
+
"""Extract efficiently SMILES embeddings per batches."""
|
452 |
+
# TODO: remove useCuda argument
|
453 |
+
|
454 |
+
# handle single str or a list of str
|
455 |
+
smiles = pd.Series(smiles) if isinstance(smiles, str) else pd.Series(list(smiles))
|
456 |
+
|
457 |
+
# SMILES normalization
|
458 |
+
smiles = smiles.apply(normalize_smiles)
|
459 |
+
null_idx = smiles[smiles.isnull()].index.to_list() # keep track of SMILES that cannot normalize
|
460 |
+
smiles = smiles.dropna()
|
461 |
+
|
462 |
+
# process in batches
|
463 |
+
n_split = smiles.shape[0] // batch_size if smiles.shape[0] >= batch_size else smiles.shape[0]
|
464 |
+
embeddings = [
|
465 |
+
self.extract_embeddings(list(batch))[2].cpu().detach().numpy()
|
466 |
+
for batch in tqdm(np.array_split(smiles, n_split))
|
467 |
+
]
|
468 |
+
flat_list = [item for sublist in embeddings for item in sublist]
|
469 |
+
|
470 |
+
# clear GPU memory
|
471 |
+
if self.is_cuda_available:
|
472 |
+
torch.cuda.empty_cache()
|
473 |
+
gc.collect()
|
474 |
+
|
475 |
+
# replacing null SMILES with NaN values
|
476 |
+
for idx in null_idx:
|
477 |
+
flat_list.insert(idx, np.array([np.nan]*self.config['n_embd']))
|
478 |
+
flat_list = np.asarray(flat_list)
|
479 |
+
|
480 |
+
if return_torch:
|
481 |
+
return torch.tensor(flat_list)
|
482 |
+
return pd.DataFrame(flat_list)
|
483 |
+
|
484 |
+
def embd_to_smiles(self, embds):
|
485 |
+
# evaluation mode
|
486 |
+
self.decoder.eval()
|
487 |
+
if self.is_cuda_available:
|
488 |
+
self.decoder.cuda()
|
489 |
+
|
490 |
+
# reconstruct token embeddings
|
491 |
+
pred_token_embds = self.decoder.autoencoder.decoder(embds)
|
492 |
+
|
493 |
+
# reconstruct tokens
|
494 |
+
pred_idx = self.decoder.lm_head(pred_token_embds.view(-1, self.max_len, self.n_embd))
|
495 |
+
pred_idx = torch.argmax(pred_idx, axis=-1).cpu().detach().numpy()
|
496 |
+
|
497 |
+
# convert idx to tokens
|
498 |
+
pred_smiles = []
|
499 |
+
for i in range(pred_idx.shape[0]):
|
500 |
+
idx = pred_idx[i]
|
501 |
+
smiles = self.tokenizer.idx_to_smiles(self, idx)
|
502 |
+
smiles = smiles.replace('<bos>', '') # begin token
|
503 |
+
smiles = smiles.replace('<eos>', '') # end token
|
504 |
+
smiles = smiles.replace('<pad>', '') # pad token
|
505 |
+
pred_smiles.append(smiles)
|
506 |
+
return pred_smiles
|
507 |
+
|
508 |
+
def decode(self, smiles_embeddings, batch_size=100):
|
509 |
+
"""Decode SMILES embeddings back to SMILES."""
|
510 |
+
# process in batches
|
511 |
+
n_split = smiles_embeddings.shape[0] // batch_size if smiles_embeddings.shape[0] >= batch_size else smiles_embeddings.shape[0]
|
512 |
+
embeddings = [
|
513 |
+
self.embd_to_smiles(batch) for batch in tqdm(np.array_split(smiles_embeddings, n_split))
|
514 |
+
]
|
515 |
+
pred_smiles = [item for sublist in embeddings for item in sublist]
|
516 |
+
|
517 |
+
# clear GPU memory
|
518 |
+
if self.is_cuda_available:
|
519 |
+
torch.cuda.empty_cache()
|
520 |
+
gc.collect()
|
521 |
+
|
522 |
+
return pred_smiles
|
523 |
+
|
524 |
+
def __str__(self):
|
525 |
+
return 'smi-ssed'
|
526 |
+
|
527 |
+
|
528 |
+
def load_smi_ssed(folder="./smi_ssed",
|
529 |
+
ckpt_filename="smi-ssed_130.pt",
|
530 |
+
vocab_filename="bert_vocab_curated.txt"
|
531 |
+
):
|
532 |
+
repo_id = "ibm/materials.smi_ssed"
|
533 |
+
filename = "bert_vocab_curated.txt"
|
534 |
+
vocab_filename = hf_hub_download(repo_id=repo_id, filename=filename)
|
535 |
+
tokenizer = MolTranBertTokenizer(vocab_filename)
|
536 |
+
model = Smi_ssed(tokenizer)
|
537 |
+
|
538 |
+
filename = "smi_ssed_130.pt"
|
539 |
+
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
540 |
+
model.load_checkpoint(file_path)
|
541 |
+
model.eval()
|
542 |
+
|
543 |
+
|
544 |
+
#tokenizer = MolTranBertTokenizer(os.path.join(folder, vocab_filename))
|
545 |
+
#model = Smi_ssed(tokenizer)
|
546 |
+
#model.load_checkpoint(os.path.join(folder, ckpt_filename))
|
547 |
+
#model.eval()
|
548 |
+
print('Vocab size:', len(tokenizer.vocab))
|
549 |
+
print(f'[INFERENCE MODE - {str(model)}]')
|
550 |
+
return model
|
models/smi_ted/smi_ted_light/load.py
CHANGED
@@ -665,10 +665,12 @@ def load_smi_ted(folder="./smi_ted_light",
|
|
665 |
ckpt_filename="smi-ted-Light_40.pt",
|
666 |
vocab_filename="bert_vocab_curated.txt"
|
667 |
):
|
668 |
-
|
|
|
|
|
|
|
669 |
model = Smi_ted(tokenizer)
|
670 |
|
671 |
-
repo_id = "ibm/materials.smi-ted"
|
672 |
filename = "smi-ted-Light_40.pt"
|
673 |
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
674 |
model.load_checkpoint(file_path)
|
|
|
665 |
ckpt_filename="smi-ted-Light_40.pt",
|
666 |
vocab_filename="bert_vocab_curated.txt"
|
667 |
):
|
668 |
+
repo_id = "ibm/materials.smi-ted"
|
669 |
+
filename = "bert_vocab_curated.txt"
|
670 |
+
vocab_filename = hf_hub_download(repo_id=repo_id, filename=filename)
|
671 |
+
tokenizer = MolTranBertTokenizer(vocab_filename)
|
672 |
model = Smi_ted(tokenizer)
|
673 |
|
|
|
674 |
filename = "smi-ted-Light_40.pt"
|
675 |
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
676 |
model.load_checkpoint(file_path)
|
requirements.txt
CHANGED
@@ -26,3 +26,4 @@ torch-optimizer
|
|
26 |
tqdm>=4.66.4
|
27 |
pandas==2.2.3
|
28 |
mordred
|
|
|
|
26 |
tqdm>=4.66.4
|
27 |
pandas==2.2.3
|
28 |
mordred
|
29 |
+
mamba_ssm==1.1.3.post1
|