ipd's picture
init
85ec4af
raw
history blame
31.1 kB
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Rhizome
# Version beta 0.0, August 2023
# Property of IBM Research, Accelerated Discovery
#
"""
PLEASE NOTE THIS IMPLEMENTATION INCLUDES THE ORIGINAL SOURCE CODE (AND SOME ADAPTATIONS)
OF THE MHG IMPLEMENTATION OF HIROSHI KAJINO AT IBM TRL ALREADY PUBLICLY AVAILABLE.
THIS MIGHT INFLUENCE THE DECISION OF THE FINAL LICENSE SO CAREFUL CHECK NEEDS BE DONE.
"""
""" Title """
__author__ = "Hiroshi Kajino <[email protected]>"
__copyright__ = "(c) Copyright IBM Corp. 2017"
__version__ = "0.1"
__date__ = "Dec 11 2017"
from copy import deepcopy
from itertools import combinations
from ..hypergraph import Hypergraph
import networkx as nx
import numpy as np
class CliqueTree(nx.Graph):
''' clique tree object
Attributes
----------
hg : Hypergraph
This hypergraph will be decomposed.
root_hg : Hypergraph
Hypergraph on the root node.
ident_node_dict : dict
ident_node_dict[key_node] gives a list of nodes that are identical (i.e., the adjacent hyperedges are common)
'''
def __init__(self, hg=None, **kwargs):
self.hg = deepcopy(hg)
if self.hg is not None:
self.ident_node_dict = self.hg.get_identical_node_dict()
else:
self.ident_node_dict = {}
super().__init__(**kwargs)
@property
def root_hg(self):
''' return the hypergraph on the root node
'''
return self.nodes[0]['subhg']
@root_hg.setter
def root_hg(self, hypergraph):
''' set the hypergraph on the root node
'''
self.nodes[0]['subhg'] = hypergraph
def insert_subhg(self, subhypergraph: Hypergraph) -> None:
''' insert a subhypergraph, which is extracted from a root hypergraph, into the tree.
Parameters
----------
subhg : Hypergraph
'''
num_nodes = self.number_of_nodes()
self.add_node(num_nodes, subhg=subhypergraph)
self.add_edge(num_nodes, 0)
adj_nodes = deepcopy(list(self.adj[0].keys()))
for each_node in adj_nodes:
if len(self.nodes[each_node]["subhg"].nodes.intersection(
self.nodes[num_nodes]["subhg"].nodes)\
- self.root_hg.nodes) != 0 and each_node != num_nodes:
self.remove_edge(0, each_node)
self.add_edge(each_node, num_nodes)
def to_irredundant(self) -> None:
''' convert the clique tree to be irredundant
'''
for each_node in self.hg.nodes:
subtree = self.subgraph([
each_tree_node for each_tree_node in self.nodes()\
if each_node in self.nodes[each_tree_node]["subhg"].nodes]).copy()
leaf_node_list = [x for x in subtree.nodes() if subtree.degree(x)==1]
redundant_leaf_node_list = []
for each_leaf_node in leaf_node_list:
if len(self.nodes[each_leaf_node]["subhg"].adj_edges(each_node)) == 0:
redundant_leaf_node_list.append(each_leaf_node)
for each_red_leaf_node in redundant_leaf_node_list:
current_node = each_red_leaf_node
while subtree.degree(current_node) == 1 \
and len(subtree.nodes[current_node]["subhg"].adj_edges(each_node)) == 0:
self.nodes[current_node]["subhg"].remove_node(each_node)
remove_node = current_node
current_node = list(dict(subtree[remove_node]).keys())[0]
subtree.remove_node(remove_node)
fixed_node_set = deepcopy(self.nodes)
for each_node in fixed_node_set:
if self.nodes[each_node]["subhg"].num_edges == 0:
if len(self[each_node]) == 1:
self.remove_node(each_node)
elif len(self[each_node]) == 2:
self.add_edge(*self[each_node])
self.remove_node(each_node)
else:
pass
else:
pass
redundant = True
while redundant:
redundant = False
fixed_edge_set = deepcopy(self.edges)
remove_node_set = set()
for node_1, node_2 in fixed_edge_set:
if node_1 in remove_node_set or node_2 in remove_node_set:
pass
else:
if self.nodes[node_1]['subhg'].is_subhg(self.nodes[node_2]['subhg']):
redundant = True
adj_node_list = set(self.adj[node_1]) - {node_2}
self.remove_node(node_1)
remove_node_set.add(node_1)
for each_node in adj_node_list:
self.add_edge(node_2, each_node)
elif self.nodes[node_2]['subhg'].is_subhg(self.nodes[node_1]['subhg']):
redundant = True
adj_node_list = set(self.adj[node_2]) - {node_1}
self.remove_node(node_2)
remove_node_set.add(node_2)
for each_node in adj_node_list:
self.add_edge(node_1, each_node)
def node_update(self, key_node: str, subhg) -> None:
""" given a pair of a hypergraph, H, and its subhypergraph, sH, return a hypergraph H\sH.
Parameters
----------
key_node : str
key node that must be removed.
subhg : Hypegraph
"""
for each_edge in subhg.edges:
self.root_hg.remove_edge(each_edge)
self.root_hg.remove_nodes(self.ident_node_dict[key_node])
adj_node_list = list(subhg.nodes)
for each_node in subhg.nodes:
if each_node not in self.ident_node_dict[key_node]:
if set(self.root_hg.adj_edges(each_node)).issubset(subhg.edges):
self.root_hg.remove_node(each_node)
adj_node_list.remove(each_node)
else:
adj_node_list.remove(each_node)
for each_node_1, each_node_2 in combinations(adj_node_list, 2):
if not self.root_hg.is_adj(each_node_1, each_node_2):
self.root_hg.add_edge(set([each_node_1, each_node_2]), attr_dict=dict(tmp=True))
subhg.remove_edges_with_attr({'tmp' : True})
self.insert_subhg(subhg)
def update(self, subhg, remove_nodes=False):
""" given a pair of a hypergraph, H, and its subhypergraph, sH, return a hypergraph H\sH.
Parameters
----------
subhg : Hypegraph
"""
for each_edge in subhg.edges:
self.root_hg.remove_edge(each_edge)
if remove_nodes:
remove_edge_list = []
for each_edge in self.root_hg.edges:
if set(self.root_hg.nodes_in_edge(each_edge)).issubset(subhg.nodes)\
and self.root_hg.edge_attr(each_edge).get('tmp', False):
remove_edge_list.append(each_edge)
self.root_hg.remove_edges(remove_edge_list)
adj_node_list = list(subhg.nodes)
for each_node in subhg.nodes:
if self.root_hg.degree(each_node) == 0:
self.root_hg.remove_node(each_node)
adj_node_list.remove(each_node)
if len(adj_node_list) != 1 and not remove_nodes:
self.root_hg.add_edge(set(adj_node_list), attr_dict=dict(tmp=True))
'''
else:
for each_node_1, each_node_2 in combinations(adj_node_list, 2):
if not self.root_hg.is_adj(each_node_1, each_node_2):
self.root_hg.add_edge(
[each_node_1, each_node_2], attr_dict=dict(tmp=True))
'''
subhg.remove_edges_with_attr({'tmp':True})
self.insert_subhg(subhg)
def _get_min_deg_node(hg, ident_node_dict: dict, mode='mol'):
if mode == 'standard':
degree_dict = hg.degrees()
min_deg_node = min(degree_dict, key=degree_dict.get)
min_deg_subhg = hg.adj_subhg(min_deg_node, ident_node_dict)
return min_deg_node, min_deg_subhg
elif mode == 'mol':
degree_dict = hg.degrees()
min_deg = min(degree_dict.values())
min_deg_node_list = [each_node for each_node in hg.nodes if degree_dict[each_node]==min_deg]
min_deg_subhg_list = [hg.adj_subhg(each_min_deg_node, ident_node_dict)
for each_min_deg_node in min_deg_node_list]
best_score = np.inf
best_idx = -1
for each_idx in range(len(min_deg_subhg_list)):
if min_deg_subhg_list[each_idx].num_nodes < best_score:
best_idx = each_idx
return min_deg_node_list[each_idx], min_deg_subhg_list[each_idx]
else:
raise ValueError
def tree_decomposition(hg, irredundant=True):
""" compute a tree decomposition of the input hypergraph
Parameters
----------
hg : Hypergraph
hypergraph to be decomposed
irredundant : bool
if True, irredundant tree decomposition will be computed.
Returns
-------
clique_tree : nx.Graph
each node contains a subhypergraph of `hg`
"""
org_hg = hg.copy()
ident_node_dict = hg.get_identical_node_dict()
clique_tree = CliqueTree(org_hg)
clique_tree.add_node(0, subhg=org_hg)
while True:
degree_dict = org_hg.degrees()
min_deg_node = min(degree_dict, key=degree_dict.get)
min_deg_subhg = org_hg.adj_subhg(min_deg_node, ident_node_dict)
if org_hg.nodes == min_deg_subhg.nodes:
break
# org_hg and min_deg_subhg are divided
clique_tree.node_update(min_deg_node, min_deg_subhg)
clique_tree.root_hg.remove_edges_with_attr({'tmp' : True})
if irredundant:
clique_tree.to_irredundant()
return clique_tree
def tree_decomposition_with_hrg(hg, hrg, irredundant=True, return_root=False):
''' compute a tree decomposition given a hyperedge replacement grammar.
the resultant clique tree should induce a less compact HRG.
Parameters
----------
hg : Hypergraph
hypergraph to be decomposed
hrg : HyperedgeReplacementGrammar
current HRG
irredundant : bool
if True, irredundant tree decomposition will be computed.
Returns
-------
clique_tree : nx.Graph
each node contains a subhypergraph of `hg`
'''
org_hg = hg.copy()
ident_node_dict = hg.get_identical_node_dict()
clique_tree = CliqueTree(org_hg)
clique_tree.add_node(0, subhg=org_hg)
root_node = 0
# construct a clique tree using HRG
success_any = True
while success_any:
success_any = False
for each_prod_rule in hrg.prod_rule_list:
org_hg, success, subhg = each_prod_rule.revert(org_hg, True)
if success:
if each_prod_rule.is_start_rule: root_node = clique_tree.number_of_nodes()
success_any = True
subhg.remove_edges_with_attr({'terminal' : False})
clique_tree.root_hg = org_hg
clique_tree.insert_subhg(subhg)
clique_tree.root_hg = org_hg
for each_edge in deepcopy(org_hg.edges):
if not org_hg.edge_attr(each_edge)['terminal']:
node_list = org_hg.nodes_in_edge(each_edge)
org_hg.remove_edge(each_edge)
for each_node_1, each_node_2 in combinations(node_list, 2):
if not org_hg.is_adj(each_node_1, each_node_2):
org_hg.add_edge([each_node_1, each_node_2], attr_dict=dict(tmp=True))
# construct a clique tree using the existing algorithm
degree_dict = org_hg.degrees()
if degree_dict:
while True:
min_deg_node, min_deg_subhg = _get_min_deg_node(org_hg, ident_node_dict)
if org_hg.nodes == min_deg_subhg.nodes: break
# org_hg and min_deg_subhg are divided
clique_tree.node_update(min_deg_node, min_deg_subhg)
clique_tree.root_hg.remove_edges_with_attr({'tmp' : True})
if irredundant:
clique_tree.to_irredundant()
if return_root:
if root_node == 0 and 0 not in clique_tree.nodes:
root_node = clique_tree.number_of_nodes()
while root_node not in clique_tree.nodes:
root_node -= 1
elif root_node not in clique_tree.nodes:
while root_node not in clique_tree.nodes:
root_node -= 1
else:
pass
return clique_tree, root_node
else:
return clique_tree
def tree_decomposition_from_leaf(hg, irredundant=True):
""" compute a tree decomposition of the input hypergraph
Parameters
----------
hg : Hypergraph
hypergraph to be decomposed
irredundant : bool
if True, irredundant tree decomposition will be computed.
Returns
-------
clique_tree : nx.Graph
each node contains a subhypergraph of `hg`
"""
def apply_normal_decomposition(clique_tree):
degree_dict = clique_tree.root_hg.degrees()
min_deg_node = min(degree_dict, key=degree_dict.get)
min_deg_subhg = clique_tree.root_hg.adj_subhg(min_deg_node, clique_tree.ident_node_dict)
if clique_tree.root_hg.nodes == min_deg_subhg.nodes:
return clique_tree, False
clique_tree.node_update(min_deg_node, min_deg_subhg)
return clique_tree, True
def apply_min_edge_deg_decomposition(clique_tree):
edge_degree_dict = clique_tree.root_hg.edge_degrees()
non_tmp_edge_list = [each_edge for each_edge in clique_tree.root_hg.edges \
if not clique_tree.root_hg.edge_attr(each_edge).get('tmp')]
if not non_tmp_edge_list:
return clique_tree, False
min_deg_edge = None
min_deg = np.inf
for each_edge in non_tmp_edge_list:
if min_deg > edge_degree_dict[each_edge]:
min_deg_edge = each_edge
min_deg = edge_degree_dict[each_edge]
node_list = clique_tree.root_hg.nodes_in_edge(min_deg_edge)
min_deg_subhg = clique_tree.root_hg.get_subhg(
node_list, [min_deg_edge], clique_tree.ident_node_dict)
if clique_tree.root_hg.nodes == min_deg_subhg.nodes:
return clique_tree, False
clique_tree.update(min_deg_subhg)
return clique_tree, True
org_hg = hg.copy()
clique_tree = CliqueTree(org_hg)
clique_tree.add_node(0, subhg=org_hg)
success = True
while success:
clique_tree, success = apply_min_edge_deg_decomposition(clique_tree)
if not success:
clique_tree, success = apply_normal_decomposition(clique_tree)
clique_tree.root_hg.remove_edges_with_attr({'tmp' : True})
if irredundant:
clique_tree.to_irredundant()
return clique_tree
def topological_tree_decomposition(
hg, irredundant=True, rip_labels=True, shrink_cycle=False, contract_cycles=False):
''' compute a tree decomposition of the input hypergraph
Parameters
----------
hg : Hypergraph
hypergraph to be decomposed
irredundant : bool
if True, irredundant tree decomposition will be computed.
Returns
-------
clique_tree : CliqueTree
each node contains a subhypergraph of `hg`
'''
def _contract_tree(clique_tree):
''' contract a single leaf
Parameters
----------
clique_tree : CliqueTree
Returns
-------
CliqueTree, bool
bool represents whether this operation succeeds or not.
'''
edge_degree_dict = clique_tree.root_hg.edge_degrees()
leaf_edge_list = [each_edge for each_edge in clique_tree.root_hg.edges \
if (not clique_tree.root_hg.edge_attr(each_edge).get('tmp'))\
and edge_degree_dict[each_edge] == 1]
if not leaf_edge_list:
return clique_tree, False
min_deg_edge = leaf_edge_list[0]
node_list = clique_tree.root_hg.nodes_in_edge(min_deg_edge)
min_deg_subhg = clique_tree.root_hg.get_subhg(
node_list, [min_deg_edge], clique_tree.ident_node_dict)
if clique_tree.root_hg.nodes == min_deg_subhg.nodes:
return clique_tree, False
clique_tree.update(min_deg_subhg)
return clique_tree, True
def _rip_labels_from_cycles(clique_tree, org_hg):
''' rip hyperedge-labels off
Parameters
----------
clique_tree : CliqueTree
org_hg : Hypergraph
Returns
-------
CliqueTree, bool
bool represents whether this operation succeeds or not.
'''
ident_node_dict = clique_tree.ident_node_dict #hg.get_identical_node_dict()
for each_edge in clique_tree.root_hg.edges:
if each_edge in org_hg.edges:
if org_hg.in_cycle(each_edge):
node_list = clique_tree.root_hg.nodes_in_edge(each_edge)
subhg = clique_tree.root_hg.get_subhg(
node_list, [each_edge], ident_node_dict)
if clique_tree.root_hg.nodes == subhg.nodes:
return clique_tree, False
clique_tree.update(subhg)
'''
in_cycle_dict = {each_node: org_hg.node_attr(each_node)['is_in_ring'] for each_node in node_list}
if not all(in_cycle_dict.values()):
node_not_in_cycle = [each_node for each_node in in_cycle_dict.keys() if not in_cycle_dict[each_node]][0]
node_list = [node_not_in_cycle]
node_list.extend(clique_tree.root_hg.adj_nodes(node_not_in_cycle))
edge_list = clique_tree.root_hg.adj_edges(node_not_in_cycle)
import pdb; pdb.set_trace()
subhg = clique_tree.root_hg.get_subhg(
node_list, edge_list, ident_node_dict)
clique_tree.update(subhg)
'''
return clique_tree, True
return clique_tree, False
def _shrink_cycle(clique_tree):
''' shrink a cycle
Parameters
----------
clique_tree : CliqueTree
Returns
-------
CliqueTree, bool
bool represents whether this operation succeeds or not.
'''
def filter_subhg(subhg, hg, key_node):
num_nodes_cycle = 0
nodes_in_cycle_list = []
for each_node in subhg.nodes:
if hg.in_cycle(each_node):
num_nodes_cycle += 1
if each_node != key_node:
nodes_in_cycle_list.append(each_node)
if num_nodes_cycle > 3:
break
if num_nodes_cycle != 3:
return False
else:
for each_edge in hg.edges:
if set(nodes_in_cycle_list).issubset(hg.nodes_in_edge(each_edge)):
return False
return True
#ident_node_dict = hg.get_identical_node_dict()
ident_node_dict = clique_tree.ident_node_dict
for each_node in clique_tree.root_hg.nodes:
if clique_tree.root_hg.in_cycle(each_node)\
and filter_subhg(clique_tree.root_hg.adj_subhg(each_node, ident_node_dict),
clique_tree.root_hg,
each_node):
target_node = each_node
target_subhg = clique_tree.root_hg.adj_subhg(target_node, ident_node_dict)
if clique_tree.root_hg.nodes == target_subhg.nodes:
return clique_tree, False
clique_tree.update(target_subhg)
return clique_tree, True
return clique_tree, False
def _contract_cycles(clique_tree):
'''
remove a subhypergraph that looks like a cycle on a leaf.
Parameters
----------
clique_tree : CliqueTree
Returns
-------
CliqueTree, bool
bool represents whether this operation succeeds or not.
'''
def _divide_hg(hg):
''' divide a hypergraph into subhypergraphs such that
each subhypergraph is connected to each other in a tree-like way.
Parameters
----------
hg : Hypergraph
Returns
-------
list of Hypergraphs
each element corresponds to a subhypergraph of `hg`
'''
for each_node in hg.nodes:
if hg.is_dividable(each_node):
adj_edges_dict = {each_edge: hg.in_cycle(each_edge) for each_edge in hg.adj_edges(each_node)}
'''
if any(adj_edges_dict.values()):
import pdb; pdb.set_trace()
edge_in_cycle = [each_key for each_key, each_val in adj_edges_dict.items() if each_val][0]
subhg1, subhg2, subhg3 = hg.divide(each_node, edge_in_cycle)
return _divide_hg(subhg1) + _divide_hg(subhg2) + _divide_hg(subhg3)
else:
'''
subhg1, subhg2 = hg.divide(each_node)
return _divide_hg(subhg1) + _divide_hg(subhg2)
return [hg]
def _is_leaf(hg, divided_subhg) -> bool:
''' judge whether subhg is a leaf-like in the original hypergraph
Parameters
----------
hg : Hypergraph
divided_subhg : Hypergraph
`divided_subhg` is a subhypergraph of `hg`
Returns
-------
bool
'''
'''
adj_edges_set = set([])
for each_node in divided_subhg.nodes:
adj_edges_set.update(set(hg.adj_edges(each_node)))
_hg = deepcopy(hg)
_hg.remove_subhg(divided_subhg)
if nx.is_connected(_hg.hg) != (len(adj_edges_set - divided_subhg.edges) == 1):
import pdb; pdb.set_trace()
return len(adj_edges_set - divided_subhg.edges) == 1
'''
_hg = deepcopy(hg)
_hg.remove_subhg(divided_subhg)
return nx.is_connected(_hg.hg)
subhg_list = _divide_hg(clique_tree.root_hg)
if len(subhg_list) == 1:
return clique_tree, False
else:
while len(subhg_list) > 1:
max_leaf_subhg = None
for each_subhg in subhg_list:
if _is_leaf(clique_tree.root_hg, each_subhg):
if max_leaf_subhg is None:
max_leaf_subhg = each_subhg
elif max_leaf_subhg.num_nodes < each_subhg.num_nodes:
max_leaf_subhg = each_subhg
clique_tree.update(max_leaf_subhg)
subhg_list.remove(max_leaf_subhg)
return clique_tree, True
org_hg = hg.copy()
clique_tree = CliqueTree(org_hg)
clique_tree.add_node(0, subhg=org_hg)
success = True
while success:
'''
clique_tree, success = _rip_labels_from_cycles(clique_tree, hg)
if not success:
clique_tree, success = _contract_cycles(clique_tree)
'''
clique_tree, success = _contract_tree(clique_tree)
if not success:
if rip_labels:
clique_tree, success = _rip_labels_from_cycles(clique_tree, hg)
if not success:
if shrink_cycle:
clique_tree, success = _shrink_cycle(clique_tree)
if not success:
if contract_cycles:
clique_tree, success = _contract_cycles(clique_tree)
clique_tree.root_hg.remove_edges_with_attr({'tmp' : True})
if irredundant:
clique_tree.to_irredundant()
return clique_tree
def molecular_tree_decomposition(hg, irredundant=True):
""" compute a tree decomposition of the input molecular hypergraph
Parameters
----------
hg : Hypergraph
molecular hypergraph to be decomposed
irredundant : bool
if True, irredundant tree decomposition will be computed.
Returns
-------
clique_tree : CliqueTree
each node contains a subhypergraph of `hg`
"""
def _divide_hg(hg):
''' divide a hypergraph into subhypergraphs such that
each subhypergraph is connected to each other in a tree-like way.
Parameters
----------
hg : Hypergraph
Returns
-------
list of Hypergraphs
each element corresponds to a subhypergraph of `hg`
'''
is_ring = False
for each_node in hg.nodes:
if hg.node_attr(each_node)['is_in_ring']:
is_ring = True
if not hg.node_attr(each_node)['is_in_ring'] \
and hg.degree(each_node) == 2:
subhg1, subhg2 = hg.divide(each_node)
return _divide_hg(subhg1) + _divide_hg(subhg2)
if is_ring:
subhg_list = []
remove_edge_list = []
remove_node_list = []
for each_edge in hg.edges:
node_list = hg.nodes_in_edge(each_edge)
subhg = hg.get_subhg(node_list, [each_edge], hg.get_identical_node_dict())
subhg_list.append(subhg)
remove_edge_list.append(each_edge)
for each_node in node_list:
if not hg.node_attr(each_node)['is_in_ring']:
remove_node_list.append(each_node)
hg.remove_edges(remove_edge_list)
hg.remove_nodes(remove_node_list, False)
return subhg_list + [hg]
else:
return [hg]
org_hg = hg.copy()
clique_tree = CliqueTree(org_hg)
clique_tree.add_node(0, subhg=org_hg)
subhg_list = _divide_hg(deepcopy(clique_tree.root_hg))
#_subhg_list = deepcopy(subhg_list)
if len(subhg_list) == 1:
pass
else:
while len(subhg_list) > 1:
max_leaf_subhg = None
for each_subhg in subhg_list:
if _is_leaf(clique_tree.root_hg, each_subhg) and not _is_ring(each_subhg):
if max_leaf_subhg is None:
max_leaf_subhg = each_subhg
elif max_leaf_subhg.num_nodes < each_subhg.num_nodes:
max_leaf_subhg = each_subhg
if max_leaf_subhg is None:
for each_subhg in subhg_list:
if _is_ring_label(clique_tree.root_hg, each_subhg):
if max_leaf_subhg is None:
max_leaf_subhg = each_subhg
elif max_leaf_subhg.num_nodes < each_subhg.num_nodes:
max_leaf_subhg = each_subhg
if max_leaf_subhg is not None:
clique_tree.update(max_leaf_subhg)
subhg_list.remove(max_leaf_subhg)
else:
for each_subhg in subhg_list:
if _is_leaf(clique_tree.root_hg, each_subhg):
if max_leaf_subhg is None:
max_leaf_subhg = each_subhg
elif max_leaf_subhg.num_nodes < each_subhg.num_nodes:
max_leaf_subhg = each_subhg
if max_leaf_subhg is not None:
clique_tree.update(max_leaf_subhg, True)
subhg_list.remove(max_leaf_subhg)
else:
break
if len(subhg_list) > 1:
'''
for each_idx, each_subhg in enumerate(subhg_list):
each_subhg.draw(f'{each_idx}', True)
clique_tree.root_hg.draw('root', True)
import pickle
with open('buggy_hg.pkl', 'wb') as f:
pickle.dump(hg, f)
return clique_tree, subhg_list, _subhg_list
'''
raise RuntimeError('bug in tree decomposition algorithm')
clique_tree.root_hg.remove_edges_with_attr({'tmp' : True})
'''
for each_tree_node in clique_tree.adj[0]:
subhg = clique_tree.nodes[each_tree_node]['subhg']
for each_edge in subhg.edges:
if set(subhg.nodes_in_edge(each_edge)).issubset(clique_tree.root_hg.nodes):
clique_tree.root_hg.add_edge(set(subhg.nodes_in_edge(each_edge)), attr_dict=dict(tmp=True))
'''
if irredundant:
clique_tree.to_irredundant()
return clique_tree #, _subhg_list
def _is_leaf(hg, subhg) -> bool:
''' judge whether subhg is a leaf-like in the original hypergraph
Parameters
----------
hg : Hypergraph
subhg : Hypergraph
`subhg` is a subhypergraph of `hg`
Returns
-------
bool
'''
if len(subhg.edges) == 0:
adj_edge_set = set([])
subhg_edge_set = set([])
for each_edge in hg.edges:
if set(hg.nodes_in_edge(each_edge)).issubset(subhg.nodes) and hg.edge_attr(each_edge).get('tmp', False):
subhg_edge_set.add(each_edge)
for each_node in subhg.nodes:
adj_edge_set.update(set(hg.adj_edges(each_node)))
if subhg_edge_set.issubset(adj_edge_set) and len(adj_edge_set.difference(subhg_edge_set)) == 1:
return True
else:
return False
elif len(subhg.edges) == 1:
adj_edge_set = set([])
subhg_edge_set = subhg.edges
for each_node in subhg.nodes:
for each_adj_edge in hg.adj_edges(each_node):
adj_edge_set.add(each_adj_edge)
if subhg_edge_set.issubset(adj_edge_set) and len(adj_edge_set.difference(subhg_edge_set)) == 1:
return True
else:
return False
else:
raise ValueError('subhg should be nodes only or one-edge hypergraph.')
def _is_ring_label(hg, subhg):
if len(subhg.edges) != 1:
return False
edge_name = list(subhg.edges)[0]
#assert edge_name in hg.edges, f'{edge_name}'
is_in_ring = False
for each_node in subhg.nodes:
if subhg.node_attr(each_node)['is_in_ring']:
is_in_ring = True
else:
adj_edge_list = list(hg.adj_edges(each_node))
adj_edge_list.remove(edge_name)
if len(adj_edge_list) == 1:
if not hg.edge_attr(adj_edge_list[0]).get('tmp', False):
return False
elif len(adj_edge_list) == 0:
pass
else:
raise ValueError
if is_in_ring:
return True
else:
return False
def _is_ring(hg):
for each_node in hg.nodes:
if not hg.node_attr(each_node)['is_in_ring']:
return False
return True