iamshaik commited on
Commit
66f904a
·
1 Parent(s): 1a3d2a5
Files changed (1) hide show
  1. app.py +83 -0
app.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import seaborn as sn
4
+ import matplotlib.pyplot as plt
5
+ import plotly.express as px
6
+
7
+ df=pd.read_csv('Placement_Data_Full_Class.csv')
8
+
9
+ df.drop(columns=['sl_no'],axis=1,inplace=True)
10
+
11
+ df_encoded=pd.get_dummies(df,columns=['gender','ssc_b',"hsc_b","workex","hsc_s","degree_t","specialisation","status"],prefix=['gender','ssc_b',"hsc_b","workex","hsc_s","degree_t","specialisation","status"], drop_first=True)
12
+
13
+ df_encoded.drop(columns='salary',axis=1,inplace=True)
14
+
15
+ test=df_encoded['status_Placed']
16
+ train=df_encoded.drop(columns='status_Placed',axis=1)
17
+
18
+ from sklearn.linear_model import LogisticRegression
19
+ from sklearn.tree import DecisionTreeClassifier
20
+ from sklearn.ensemble import RandomForestClassifier
21
+ from sklearn.svm import SVC
22
+ from sklearn import tree
23
+ from sklearn.model_selection import train_test_split
24
+ from sklearn import metrics
25
+
26
+ x_train,x_test,y_train,y_test=train_test_split(train,test,test_size=0.2,random_state=0)
27
+
28
+ from sklearn.preprocessing import StandardScaler
29
+ ss=StandardScaler()
30
+ x_train=ss.fit_transform(x_train)
31
+ x_test=ss.transform(x_test)
32
+
33
+ lr = LogisticRegression()
34
+
35
+ lr.fit(x_train,y_train)
36
+ #y_pred = lr.predict(x_test)
37
+ #print(metrics.accuracy_score(y_test,y_pred))
38
+
39
+ # Define the prediction function
40
+ def predict_placement_status(ssc_p,hsc_p,degree_p,etest_p,mba_p,gender_M,ssc_b_Others,hsc_b_Others,workex_Yes,hsc_s_Commerce,hsc_s_Science,degree_t_Others,degree_t_Sci_Tech,specialisation_Mkt_HR):
41
+
42
+ gender_M = 1 if gender_M == "Male" else 0
43
+ ssc_b_Others = 1 if ssc_b_Others == "Others" else 0
44
+ hsc_b_Others = 1 if hsc_b_Others == "Others" else 0
45
+ workex_Yes = 1 if workex_Yes == "Yes" else 0
46
+ hsc_s_Commerce = 1 if hsc_s_Commerce == "Commerce" else 0
47
+ hsc_s_Science = 1 if hsc_s_Science == "Science" else 0
48
+ degree_t_Others = 1 if degree_t_Others == "Others" else 0
49
+ degree_t_Sci_Tech = 1 if degree_t_Sci_Tech == "Sci&Tech" else 0
50
+ specialisation_Mkt_HR = 1 if specialisation_Mkt_HR == "Mkt&HR" else 0
51
+ input_data = [[float(ssc_p),float(hsc_p),float(degree_p),float(etest_p),float(mba_p),gender_M,ssc_b_Others,hsc_b_Others,workex_Yes,hsc_s_Commerce,hsc_s_Science,degree_t_Others,degree_t_Sci_Tech,specialisation_Mkt_HR]]
52
+
53
+
54
+
55
+ input_data_scaled = ss.transform(input_data)
56
+ prediction = lr.predict(input_data_scaled)
57
+ return "Placed" if prediction[0] == 1 else "Not Placed"
58
+
59
+
60
+
61
+ iface = gr.Interface(fn=predict_placement_status,
62
+ inputs=[gr.Number(label="SSC Marks"),
63
+ gr.Number(label="HSC Marks"),
64
+ gr.Number(label="Degree Marks"),
65
+ gr.Number(label="Emploibility-test Marks"),
66
+ gr.Number(label="MBA Marks"),
67
+ gr.Radio(label="Gender", choices=["Female", "Male"]),
68
+ gr.Radio(label="SSC Board", choices=["Central", "Others"]),
69
+ gr.Radio(label="HSC Board", choices=["Central", "Others"]),
70
+ gr.Radio(label="Work Experience", choices=["No", "Yes"]),
71
+ gr.Radio(label="HSC Stream", choices=["Commerce", "Science", "Arts"]),
72
+ gr.Radio(label="HSC Stream", choices=["Commerce", "Science", "Arts"]),
73
+ gr.Radio(label="Degree Type", choices=["Others", "Sci&Tech", "Comm&Mgmt"]),
74
+ gr.Radio(label="Degree Type", choices=["Others", "Sci&Tech", "Comm&Mgmt"]),
75
+ gr.Radio(label="Specialisation", choices=["Mkt&HR", "Mkt&Fin"]),
76
+ ],
77
+ outputs="text",
78
+ title="Prediction",
79
+ description="Predict based on selected features.",theme='compact'
80
+ )
81
+
82
+ iface.launch(share=True)
83
+