Spaces:
Runtime error
Runtime error
File size: 1,355 Bytes
a22067d 132e068 d745a08 132e068 e9409f4 763da04 132e068 48a6a70 46ff20d 827e9ce 5b66ed1 132e068 a22067d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
def greet(name):
return "Hello " + name + "!!"
import torch
from transformers import pipeline
speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
from transformers import AutoConfig
config = AutoConfig.from_pretrained("dbmdz/bert-base-german-cased")
from datasets import load_dataset, Audio
# dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
# dataset = load_dataset("beans", split="train")
dataset = load_dataset("lmms-lab/LMMs-Eval-Lite", "ai2d")
dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate))
result = speech_recognizer(dataset[:4]["audio"])
print([d["text"] for d in result])
# ;allenai/WildBench
# ==black-forest-labs/FLUX.1-dev==
#LLM360/TxT360 sasad
# iSolver-AI/FEnet
model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.")
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch() |