Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
import gradio as gr | |
import PIL.Image | |
import spaces | |
import torch | |
from transformers import AutoProcessor, BlipForConditionalGeneration | |
DESCRIPTION = "# Image Captioning with BLIP" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_id = "Salesforce/blip-image-captioning-large" | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = BlipForConditionalGeneration.from_pretrained(model_id).to(device) | |
def run(image: PIL.Image.Image, text: str = "A picture of") -> str: | |
inputs = processor(images=image, text=text, return_tensors="pt").to(device) | |
generated_ids = model.generate(pixel_values=inputs.pixel_values, num_beams=3, max_length=20, min_length=5) | |
return processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
with gr.Blocks(css_paths="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
input_image = gr.Image(type="pil") | |
text = gr.Textbox(label="Text", value="A picture of") | |
run_button = gr.Button("Caption") | |
output = gr.Textbox(label="Result") | |
gr.on( | |
triggers=[text.submit, run_button.click], | |
fn=run, | |
inputs=[input_image, text], | |
outputs=output, | |
api_name="caption", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |