Spaces:
Running
Running
File size: 4,503 Bytes
5eeb557 16ea01f 8612fe9 5eeb557 fa7b0cc 5eeb557 0a27377 fa7b0cc 0a27377 fa7b0cc 5eeb557 fa7b0cc b56cca7 c708775 fa7b0cc 5eeb557 16ea01f 8612fe9 fa7b0cc 8612fe9 fa7b0cc 8612fe9 fa7b0cc 8612fe9 fa7b0cc 8612fe9 bf742c5 fa7b0cc 8612fe9 fa7b0cc 8612fe9 f985314 8612fe9 fa7b0cc 8612fe9 fa7b0cc 8612fe9 fa7b0cc 8612fe9 fa7b0cc 8612fe9 fa7b0cc 8612fe9 f985314 8612fe9 16ea01f fa7b0cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
#!/usr/bin/env python
from __future__ import annotations
import os
import pathlib
import random
import shlex
import subprocess
if os.getenv("SYSTEM") == "spaces":
subprocess.run(shlex.split("pip install click==7.1.2"))
subprocess.run(shlex.split("pip install typer==0.9.4"))
import mim
mim.uninstall("mmcv-full", confirm_yes=True)
mim.install("mmcv-full==1.5.2", is_yes=True)
with open("patch") as f:
subprocess.run(shlex.split("patch -p1"), cwd="Text2Human", stdin=f)
import gradio as gr
import numpy as np
from model import Model
DESCRIPTION = """# [Text2Human](https://github.com/yumingj/Text2Human)
You can modify sample steps and seeds. By varying seeds, you can sample different human images under the same pose, shape description, and texture description. The larger the sample steps, the better quality of the generated images. (The default value of sample steps is 256 in the original repo.)
Label image generation step can be skipped. However, in that case, the input label image must be 512x256 in size and must contain only the specified colors.
"""
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
model = Model()
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label="Input Pose Image", type="pil", elem_id="input-image")
pose_data = gr.State()
with gr.Row():
paths = sorted(pathlib.Path("pose_images").glob("*.png"))
gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_image)
with gr.Row():
shape_text = gr.Textbox(
label="Shape Description",
placeholder="""<gender>, <sleeve length>, <length of lower clothing>, <outer clothing type>, <other accessories1>, ...
Note: The outer clothing type and accessories can be omitted.""",
)
with gr.Row():
gr.Examples(
examples=[["man, sleeveless T-shirt, long pants"], ["woman, short-sleeve T-shirt, short jeans"]],
inputs=shape_text,
)
with gr.Row():
generate_label_button = gr.Button("Generate Label Image")
with gr.Column():
with gr.Row():
label_image = gr.Image(label="Label Image", type="numpy", format="png", elem_id="label-image")
with gr.Row():
texture_text = gr.Textbox(
label="Texture Description",
placeholder="""<upper clothing texture>, <lower clothing texture>, <outer clothing texture>
Note: Currently, only 5 types of textures are supported, i.e., pure color, stripe/spline, plaid/lattice, floral, denim.""",
)
with gr.Row():
gr.Examples(
examples=[
["pure color, denim"],
["floral, stripe"],
],
inputs=texture_text,
)
with gr.Row():
sample_steps = gr.Slider(label="Sample Steps", minimum=10, maximum=300, step=1, value=256)
with gr.Row():
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
generate_human_button = gr.Button("Generate Human")
with gr.Column():
with gr.Row():
result = gr.Image(label="Result")
input_image.change(
fn=model.process_pose_image,
inputs=input_image,
outputs=pose_data,
)
generate_label_button.click(
fn=model.generate_label_image,
inputs=[
pose_data,
shape_text,
],
outputs=label_image,
)
generate_human_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
).then(
fn=model.generate_human,
inputs=[
label_image,
texture_text,
sample_steps,
seed,
],
outputs=result,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch()
|