Spaces:
Runtime error
Runtime error
File size: 4,659 Bytes
11dad4e 1a2d639 11dad4e 312a92e d0e4e3c 9d6732b b590141 1a2d639 11dad4e 1a2d639 11dad4e 1a2d639 11dad4e 1a2d639 11dad4e 1a2d639 11dad4e 1a2d639 11dad4e 1a2d639 11dad4e 1a2d639 11dad4e 1a2d639 11dad4e 1a2d639 11dad4e 1a2d639 11dad4e 1a2d639 11dad4e bb41be0 11dad4e 1a2d639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
#!/usr/bin/env python
from __future__ import annotations
import io
import pathlib
import tarfile
import deepdanbooru as dd
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import tensorflow as tf
from huggingface_hub import hf_hub_download
TITLE = "TADNE Image Search with DeepDanbooru"
DESCRIPTION = """The original TADNE site is https://thisanimedoesnotexist.ai/.
This app shows images similar to the query image from images generated
by the TADNE model with seed 0-99999.
Here, image similarity is measured by the L2 distance of the intermediate
features by the [DeepDanbooru](https://github.com/KichangKim/DeepDanbooru)
model.
The resolution of the output images in this app is 128x128, but you can
check the original 512x512 images from URLs like
https://thisanimedoesnotexist.ai/slider.html?seed=10000 using the output seeds.
Expected execution time on Hugging Face Spaces: 7s
Related Apps:
- [TADNE](https://huggingface.co/spaces/hysts/TADNE)
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer)
- [TADNE Image Selector](https://huggingface.co/spaces/hysts/TADNE-image-selector)
- [TADNE Interpolation](https://huggingface.co/spaces/hysts/TADNE-interpolation)
- [DeepDanbooru](https://huggingface.co/spaces/hysts/DeepDanbooru)
"""
def load_deepdanbooru_predictions(dirname: str) -> np.ndarray:
path = hf_hub_download(
"hysts/TADNE-sample-images",
f"prediction_results/deepdanbooru/intermediate_features/{dirname}.npy",
repo_type="dataset",
)
return np.load(path)
def load_sample_image_paths() -> list[pathlib.Path]:
image_dir = pathlib.Path("images")
if not image_dir.exists():
dataset_repo = "hysts/sample-images-TADNE"
path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset")
with tarfile.open(path) as f:
f.extractall()
return sorted(image_dir.glob("*"))
def create_model() -> tf.keras.Model:
path = huggingface_hub.hf_hub_download("public-data/DeepDanbooru", "model-resnet_custom_v3.h5")
model = tf.keras.models.load_model(path)
model = tf.keras.Model(model.input, model.layers[-4].output)
layer = tf.keras.layers.GlobalAveragePooling2D()
model = tf.keras.Sequential([model, layer])
return model
image_size = 128
dirname = "0-99999"
tarball_path = hf_hub_download("hysts/TADNE-sample-images", f"{image_size}/{dirname}.tar", repo_type="dataset")
deepdanbooru_predictions = load_deepdanbooru_predictions(dirname)
model = create_model()
def predict(image: PIL.Image.Image) -> np.ndarray:
_, height, width, _ = model.input_shape
image = np.asarray(image)
image = tf.image.resize(image, size=(height, width), method=tf.image.ResizeMethod.AREA, preserve_aspect_ratio=True)
image = image.numpy()
image = dd.image.transform_and_pad_image(image, width, height)
image = image / 255.0
features = model.predict(image[None, ...])[0]
features = features.astype(float)
return features
def run(
image: PIL.Image.Image,
nrows: int,
ncols: int,
) -> tuple[np.ndarray, np.ndarray]:
features = predict(image)
distances = ((deepdanbooru_predictions - features) ** 2).sum(axis=1)
image_indices = np.argsort(distances)
seeds = []
images = []
with tarfile.TarFile(tarball_path) as tar_file:
for index in range(nrows * ncols):
image_index = image_indices[index]
seeds.append(image_index)
member = tar_file.getmember(f"{dirname}/{image_index:07d}.jpg")
with tar_file.extractfile(member) as f: # type: ignore
data = io.BytesIO(f.read())
image = PIL.Image.open(data)
image = np.asarray(image)
images.append(image)
res = (
np.asarray(images)
.reshape(nrows, ncols, image_size, image_size, 3)
.transpose(0, 2, 1, 3, 4)
.reshape(nrows * image_size, ncols * image_size, 3)
)
seeds = np.asarray(seeds).reshape(nrows, ncols)
return res, seeds
image_paths = load_sample_image_paths()
examples = [[path.as_posix(), 2, 5] for path in image_paths]
demo = gr.Interface(
fn=run,
inputs=[
gr.Image(label="Input", type="pil"),
gr.Slider(label="Number of Rows", minimum=1, maximum=10, step=1, value=2),
gr.Slider(label="Number of Columns", minimum=1, maximum=10, step=1, value=2),
],
outputs=[
gr.Image(label="Output"),
gr.Dataframe(label="Seed"),
],
examples=examples,
title=TITLE,
description=DESCRIPTION,
)
if __name__ == "__main__":
demo.queue().launch()
|