File size: 6,301 Bytes
cecb702
 
 
 
 
 
 
 
9974205
cecb702
 
 
e3f1212
cecb702
e3f1212
cecb702
 
e3f1212
 
 
cecb702
e3f1212
cecb702
 
e3f1212
 
cecb702
e3f1212
cecb702
 
 
e3f1212
cecb702
 
 
 
 
 
 
3c9cf58
cecb702
 
 
9974205
e3f1212
 
 
 
 
 
 
 
 
 
3c9cf58
e3f1212
cecb702
 
 
 
 
 
 
 
3c9cf58
cecb702
 
 
 
 
 
 
 
 
 
 
e3f1212
 
 
 
 
 
 
 
 
cecb702
 
3c9cf58
cecb702
e3f1212
 
 
 
 
20a5d7e
cecb702
 
e3f1212
cecb702
 
e3f1212
3c9cf58
cecb702
e3f1212
 
cecb702
e3f1212
 
cecb702
e3f1212
 
 
 
 
 
 
 
cecb702
e3f1212
cecb702
e3f1212
cecb702
 
 
 
 
 
e3f1212
cecb702
 
 
 
 
e3f1212
 
 
 
 
 
 
 
 
 
 
 
 
 
cecb702
e3f1212
cecb702
 
 
e3f1212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cecb702
73410a4
3c9cf58
cecb702
 
 
 
 
 
 
73410a4
 
 
 
 
 
 
 
 
 
 
cecb702
e3f1212
cecb702
e3f1212
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python

import os
import random

import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline

DESCRIPTION = "# Kandinsky 2.2"
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
    pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
        "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
    )
    pipe_prior.to(device)
    pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16)
    pipe.to(device)
    if USE_TORCH_COMPILE:
        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
else:
    pipe_prior = None
    pipe = None


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)  # noqa: S311
    return seed


@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str = "low quality, bad quality",
    seed: int = 0,
    width: int = 768,
    height: int = 768,
    guidance_scale_prior: float = 1.0,
    guidance_scale: float = 4.0,
    num_inference_steps_prior: int = 50,
    num_inference_steps: int = 100,
    progress: gr.Progress = gr.Progress(track_tqdm=True),  # noqa: ARG001, B008
) -> PIL.Image.Image:
    generator = torch.Generator().manual_seed(seed)
    image_embeds, negative_image_embeds = pipe_prior(
        prompt,
        negative_prompt,
        generator=generator,
        guidance_scale=guidance_scale_prior,
        num_inference_steps=num_inference_steps_prior,
    ).to_tuple()
    return pipe(
        image_embeds=image_embeds,
        negative_image_embeds=negative_image_embeds,
        height=height,
        width=width,
        generator=generator,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
    ).images[0]


examples = [
    "An astronaut riding a horse",
    "portrait of a young woman, blue eyes, cinematic",
    "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting",
    "bird eye view shot of a full body woman with cyan light orange magenta makeup, digital art, long braided hair her face separated by makeup in the style of yin Yang surrealism, symmetrical face, real image, contrasting tone, pastel gradient background",
    "A car exploding into colorful dust",
    "editorial photography of an organic, almost liquid smoke style armchair",
    "birds eye view of a quilted paper style alien planet landscape, vibrant colours, Cinematic lighting",
    "Toy smiling cute octopus in a black hat, sticker",
    "Red sport car, sticker",
]

with gr.Blocks(css_paths="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                submit_btn=True,
            )
        result = gr.Image(label="Result", show_label=False)
        with gr.Accordion("Advanced options", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                value="low quality, bad quality",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=768,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=768,
            )
            guidance_scale_prior = gr.Slider(
                label="Guidance scale for prior",
                minimum=1,
                maximum=20,
                step=0.1,
                value=1.0,
            )
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=1,
                maximum=20,
                step=0.1,
                value=4.0,
            )
            num_inference_steps_prior = gr.Slider(
                label="Number of inference steps for prior",
                minimum=10,
                maximum=100,
                step=1,
                value=50,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=10,
                maximum=150,
                step=1,
                value=100,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=result,
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    gr.on(
        triggers=[prompt.submit, negative_prompt.submit],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            width,
            height,
            guidance_scale_prior,
            guidance_scale,
            num_inference_steps_prior,
            num_inference_steps,
        ],
        outputs=result,
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()