|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__(self, inf, onf): |
|
super(ResnetBlock, self).__init__() |
|
self.conv_block = self.build_conv_block(inf, onf) |
|
|
|
def build_conv_block(self, inf, onf): |
|
conv_block = [ |
|
nn.Conv3d(inf, onf, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm3d(onf), |
|
nn.LeakyReLU(0.2) |
|
] |
|
conv_block += [ |
|
nn.Conv3d(onf, onf, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm3d(onf) |
|
] |
|
return nn.Sequential(*conv_block) |
|
|
|
def forward(self, x): |
|
out = x + self.conv_block(x) |
|
return out |
|
|
|
|
|
class DeUpBlock(nn.Module): |
|
def __init__(self, inf, onf): |
|
super(DeUpBlock, self).__init__() |
|
self.deupblock = nn.Sequential( |
|
nn.ConvTranspose3d(inf, onf, kernel_size=(1, 3, 1), stride=(1, 3, 1), padding=(0, 0, 0)), |
|
nn.LeakyReLU(0.2) |
|
) |
|
|
|
def forward(self, x): |
|
return self.deupblock(x) |
|
|
|
|
|
class ResnetGenerator(nn.Module): |
|
def __init__(self, input_nc=1, output_nc=1, ngf=32, n_residual_blocks=2): |
|
super(ResnetGenerator, self).__init__() |
|
self.n_residual_blocks = n_residual_blocks |
|
|
|
self.conv_block1 = nn.Sequential( |
|
nn.Conv3d(input_nc, ngf, kernel_size=3, padding=1), |
|
nn.LeakyReLU(0.2) |
|
) |
|
|
|
for i in range(n_residual_blocks): |
|
self.add_module(f'residual_block{i+1}', ResnetBlock(ngf, ngf)) |
|
|
|
self.conv_block2 = nn.Sequential( |
|
nn.Conv3d(ngf, ngf, kernel_size=3, padding=1), |
|
nn.BatchNorm3d(ngf) |
|
) |
|
|
|
self.deup = DeUpBlock(ngf, ngf) |
|
self.conv3 = nn.Conv3d(ngf, output_nc, kernel_size=3, padding=1) |
|
|
|
def forward(self, x): |
|
x = self.conv_block1(x) |
|
y = x.clone() |
|
for i in range(self.n_residual_blocks): |
|
y = self.__getattr__(f'residual_block{i+1}')(y) |
|
x = self.conv_block2(y) + x |
|
x = self.deup(x) |
|
return self.conv3(x) |
|
|