import torch import torch.nn as nn # Resnet Block class ResnetBlock(nn.Module): def __init__(self, inf, onf): super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(inf, onf) def build_conv_block(self, inf, onf): conv_block = [ nn.Conv3d(inf, onf, kernel_size=3, stride=1, padding=1), nn.BatchNorm3d(onf), nn.LeakyReLU(0.2) ] conv_block += [ nn.Conv3d(onf, onf, kernel_size=3, stride=1, padding=1), nn.BatchNorm3d(onf) ] return nn.Sequential(*conv_block) def forward(self, x): out = x + self.conv_block(x) return out # DeUpBlock for upsampling in the width dimension class DeUpBlock(nn.Module): def __init__(self, inf, onf): super(DeUpBlock, self).__init__() self.deupblock = nn.Sequential( nn.ConvTranspose3d(inf, onf, kernel_size=(1, 3, 1), stride=(1, 3, 1), padding=(0, 0, 0)), nn.LeakyReLU(0.2) ) def forward(self, x): return self.deupblock(x) # Resnet Generator class ResnetGenerator(nn.Module): def __init__(self, input_nc=1, output_nc=1, ngf=32, n_residual_blocks=2): super(ResnetGenerator, self).__init__() self.n_residual_blocks = n_residual_blocks self.conv_block1 = nn.Sequential( nn.Conv3d(input_nc, ngf, kernel_size=3, padding=1), nn.LeakyReLU(0.2) ) for i in range(n_residual_blocks): self.add_module(f'residual_block{i+1}', ResnetBlock(ngf, ngf)) self.conv_block2 = nn.Sequential( nn.Conv3d(ngf, ngf, kernel_size=3, padding=1), nn.BatchNorm3d(ngf) ) self.deup = DeUpBlock(ngf, ngf) self.conv3 = nn.Conv3d(ngf, output_nc, kernel_size=3, padding=1) def forward(self, x): x = self.conv_block1(x) y = x.clone() for i in range(self.n_residual_blocks): y = self.__getattr__(f'residual_block{i+1}')(y) x = self.conv_block2(y) + x x = self.deup(x) return self.conv3(x)