Spaces:
Running
on
Zero
Running
on
Zero
add tree option
Browse files- fps_cluster.py +13 -5
fps_cluster.py
CHANGED
@@ -3,7 +3,7 @@ import numpy as np
|
|
3 |
import torch
|
4 |
|
5 |
|
6 |
-
def build_tree(all_dots):
|
7 |
num_sample = all_dots.shape[0]
|
8 |
# center = all_dots.mean(axis=0)
|
9 |
center = np.median(all_dots, axis=0)
|
@@ -11,10 +11,18 @@ def build_tree(all_dots):
|
|
11 |
start_idx = np.argmin(distances_to_center)
|
12 |
indices = [start_idx]
|
13 |
distances = [114514,]
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
for i in range(num_sample - 1):
|
19 |
_A = A[indices]
|
20 |
min_dist = _A.min(dim=0).values
|
|
|
3 |
import torch
|
4 |
|
5 |
|
6 |
+
def build_tree(all_dots, dist='euclidean'):
|
7 |
num_sample = all_dots.shape[0]
|
8 |
# center = all_dots.mean(axis=0)
|
9 |
center = np.median(all_dots, axis=0)
|
|
|
11 |
start_idx = np.argmin(distances_to_center)
|
12 |
indices = [start_idx]
|
13 |
distances = [114514,]
|
14 |
+
if dist == 'euclidean':
|
15 |
+
A = all_dots[:, None] - all_dots[None, :]
|
16 |
+
A = (A ** 2).sum(-1)
|
17 |
+
A = np.sqrt(A)
|
18 |
+
A = torch.tensor(A)
|
19 |
+
elif dist == 'cosine':
|
20 |
+
# assume all_dots is normalized
|
21 |
+
A = all_dots @ all_dots.T
|
22 |
+
A = torch.tensor(A)
|
23 |
+
A = 1 - A
|
24 |
+
else:
|
25 |
+
raise ValueError('dist must be euclidean or cosine')
|
26 |
for i in range(num_sample - 1):
|
27 |
_A = A[indices]
|
28 |
min_dist = _A.min(dim=0).values
|