ncut-pytorch / backbone.py
huzey's picture
update sam2
5c67556
raw
history blame
20 kB
from typing import Optional, Tuple
from einops import rearrange
import requests
import torch
import torch.nn.functional as F
import timm
from PIL import Image
from torch import nn
import numpy as np
import os
import time
import gradio as gr
MODEL_DICT = {}
def transform_image(image, resolution=(1024, 1024), use_cuda=False):
image = image.convert('RGB').resize(resolution, Image.Resampling.NEAREST)
# Convert to torch tensor
image = torch.tensor(np.array(image).transpose(2, 0, 1)).float()
if use_cuda:
image = image.cuda()
image = image / 255
# Normalize
image = (image - 0.5) / 0.5
return image
class MobileSAM(nn.Module):
def __init__(self, **kwargs):
super().__init__(**kwargs)
from mobile_sam import sam_model_registry
url = "https://raw.githubusercontent.com/ChaoningZhang/MobileSAM/master/weights/mobile_sam.pt"
model_type = "vit_t"
sam_checkpoint = "mobile_sam.pt"
if not os.path.exists(sam_checkpoint):
import requests
r = requests.get(url)
with open(sam_checkpoint, "wb") as f:
f.write(r.content)
mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
def new_forward_fn(self, x):
shortcut = x
x = self.conv1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.act2(x)
self.attn_output = rearrange(x.clone(), "b c h w -> b h w c")
x = self.conv3(x)
self.mlp_output = rearrange(x.clone(), "b c h w -> b h w c")
x = self.drop_path(x)
x += shortcut
x = self.act3(x)
self.block_output = rearrange(x.clone(), "b c h w -> b h w c")
return x
setattr(
mobile_sam.image_encoder.layers[0].blocks[0].__class__,
"forward",
new_forward_fn,
)
def new_forward_fn2(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
res_x = x
if H == self.window_size and W == self.window_size:
x = self.attn(x)
else:
x = x.view(B, H, W, C)
pad_b = (self.window_size - H % self.window_size) % self.window_size
pad_r = (self.window_size - W % self.window_size) % self.window_size
padding = pad_b > 0 or pad_r > 0
if padding:
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
pH, pW = H + pad_b, W + pad_r
nH = pH // self.window_size
nW = pW // self.window_size
# window partition
x = (
x.view(B, nH, self.window_size, nW, self.window_size, C)
.transpose(2, 3)
.reshape(B * nH * nW, self.window_size * self.window_size, C)
)
x = self.attn(x)
# window reverse
x = (
x.view(B, nH, nW, self.window_size, self.window_size, C)
.transpose(2, 3)
.reshape(B, pH, pW, C)
)
if padding:
x = x[:, :H, :W].contiguous()
x = x.view(B, L, C)
hw = np.sqrt(x.shape[1]).astype(int)
self.attn_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw)
x = res_x + self.drop_path(x)
x = x.transpose(1, 2).reshape(B, C, H, W)
x = self.local_conv(x)
x = x.view(B, C, L).transpose(1, 2)
mlp_output = self.mlp(x)
self.mlp_output = rearrange(
mlp_output.clone(), "b (h w) c -> b h w c", h=hw
)
x = x + self.drop_path(mlp_output)
self.block_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw)
return x
setattr(
mobile_sam.image_encoder.layers[1].blocks[0].__class__,
"forward",
new_forward_fn2,
)
mobile_sam.eval()
self.image_encoder = mobile_sam.image_encoder
@torch.no_grad()
def forward(self, x):
with torch.no_grad():
x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
out = self.image_encoder(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i_layer in range(len(self.image_encoder.layers)):
for i_block in range(len(self.image_encoder.layers[i_layer].blocks)):
blk = self.image_encoder.layers[i_layer].blocks[i_block]
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
return attn_outputs, mlp_outputs, block_outputs
MODEL_DICT["MobileSAM"] = MobileSAM()
class SAM(torch.nn.Module):
def __init__(self, **kwargs):
super().__init__(**kwargs)
from segment_anything import sam_model_registry, SamPredictor
from segment_anything.modeling.sam import Sam
checkpoint = "sam_vit_b_01ec64.pth"
if not os.path.exists(checkpoint):
checkpoint_url = (
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
)
import requests
r = requests.get(checkpoint_url)
with open(checkpoint, "wb") as f:
f.write(r.content)
sam: Sam = sam_model_registry["vit_b"](checkpoint=checkpoint)
from segment_anything.modeling.image_encoder import (
window_partition,
window_unpartition,
)
def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x
x = self.norm1(x)
# Window partition
if self.window_size > 0:
H, W = x.shape[1], x.shape[2]
x, pad_hw = window_partition(x, self.window_size)
x = self.attn(x)
# Reverse window partition
if self.window_size > 0:
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
self.attn_output = x.clone()
x = shortcut + x
mlp_outout = self.mlp(self.norm2(x))
self.mlp_output = mlp_outout.clone()
x = x + mlp_outout
self.block_output = x.clone()
return x
setattr(sam.image_encoder.blocks[0].__class__, "forward", new_block_forward)
self.image_encoder = sam.image_encoder
self.image_encoder.eval()
@torch.no_grad()
def forward(self, x: torch.Tensor) -> torch.Tensor:
with torch.no_grad():
x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
out = self.image_encoder(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i, blk in enumerate(self.image_encoder.blocks):
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
attn_outputs = torch.stack(attn_outputs)
mlp_outputs = torch.stack(mlp_outputs)
block_outputs = torch.stack(block_outputs)
return attn_outputs, mlp_outputs, block_outputs
MODEL_DICT["SAM(sam_vit_b)"] = SAM()
class SAM2(nn.Module):
def __init__(self, model_cfg='sam2_hiera_b+',):
super().__init__()
try:
from sam2.build_sam import build_sam2
except ImportError:
print("Please install segment_anything_2 from https://github.com/facebookresearch/segment-anything-2.git")
return
config_dict = {
'sam2_hiera_large': ("sam2_hiera_large.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt"),
'sam2_hiera_b+': ("sam2_hiera_base_plus.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_base_plus.pt"),
'sam2_hiera_s': ("sam2_hiera_small.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_small.pt"),
'sam2_hiera_t': ("sam2_hiera_tiny.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt"),
}
filename, url = config_dict[model_cfg]
if not os.path.exists(filename):
print(f"Downloading {url}")
r = requests.get(url)
with open(filename, 'wb') as f:
f.write(r.content)
sam2_checkpoint = filename
device = 'cuda' if torch.cuda.is_available() else 'cpu'
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
image_encoder = sam2_model.image_encoder
image_encoder.eval()
from sam2.modeling.backbones.hieradet import do_pool
from sam2.modeling.backbones.utils import window_partition, window_unpartition
def new_forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x # B, H, W, C
x = self.norm1(x)
# Skip connection
if self.dim != self.dim_out:
shortcut = do_pool(self.proj(x), self.pool)
# Window partition
window_size = self.window_size
if window_size > 0:
H, W = x.shape[1], x.shape[2]
x, pad_hw = window_partition(x, window_size)
# Window Attention + Q Pooling (if stage change)
x = self.attn(x)
if self.q_stride:
# Shapes have changed due to Q pooling
window_size = self.window_size // self.q_stride[0]
H, W = shortcut.shape[1:3]
pad_h = (window_size - H % window_size) % window_size
pad_w = (window_size - W % window_size) % window_size
pad_hw = (H + pad_h, W + pad_w)
# Reverse window partition
if self.window_size > 0:
x = window_unpartition(x, window_size, pad_hw, (H, W))
self.attn_output = x.clone()
x = shortcut + self.drop_path(x)
# MLP
mlp_out = self.mlp(self.norm2(x))
self.mlp_output = mlp_out.clone()
x = x + self.drop_path(mlp_out)
self.block_output = x.clone()
return x
setattr(image_encoder.trunk.blocks[0].__class__, 'forward', new_forward)
self.image_encoder = image_encoder
@torch.no_grad()
def forward(self, x: torch.Tensor) -> torch.Tensor:
output = self.image_encoder(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for block in self.image_encoder.trunk.blocks:
attn_outputs.append(block.attn_output)
mlp_outputs.append(block.mlp_output)
block_outputs.append(block.block_output)
return attn_outputs, mlp_outputs, block_outputs
MODEL_DICT["SAM2(sam2_hiera_b+)"] = SAM2(model_cfg='sam2_hiera_b+')
MODEL_DICT["SAM2(sam2_hiera_t)"] = SAM2(model_cfg='sam2_hiera_t')
class DiNOv2(torch.nn.Module):
def __init__(self, ver="dinov2_vitb14_reg"):
super().__init__()
self.dinov2 = torch.hub.load("facebookresearch/dinov2", ver)
self.dinov2.requires_grad_(False)
self.dinov2.eval()
def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
def attn_residual_func(x):
return self.ls1(self.attn(self.norm1(x)))
def ffn_residual_func(x):
return self.ls2(self.mlp(self.norm2(x)))
attn_output = attn_residual_func(x)
hw = np.sqrt(attn_output.shape[1] - 5).astype(int)
self.attn_output = rearrange(
attn_output.clone()[:, 5:], "b (h w) c -> b h w c", h=hw
)
x = x + attn_output
mlp_output = ffn_residual_func(x)
self.mlp_output = rearrange(
mlp_output.clone()[:, 5:], "b (h w) c -> b h w c", h=hw
)
x = x + mlp_output
block_output = x
self.block_output = rearrange(
block_output.clone()[:, 5:], "b (h w) c -> b h w c", h=hw
)
return x
setattr(self.dinov2.blocks[0].__class__, "forward", new_block_forward)
@torch.no_grad()
def forward(self, x):
out = self.dinov2(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i, blk in enumerate(self.dinov2.blocks):
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
attn_outputs = torch.stack(attn_outputs)
mlp_outputs = torch.stack(mlp_outputs)
block_outputs = torch.stack(block_outputs)
return attn_outputs, mlp_outputs, block_outputs
MODEL_DICT["DiNO(dinov2_vitb14_reg)"] = DiNOv2()
def resample_position_embeddings(embeddings, h, w):
cls_embeddings = embeddings[0]
patch_embeddings = embeddings[1:] # [14*14, 768]
hw = np.sqrt(patch_embeddings.shape[0]).astype(int)
patch_embeddings = rearrange(patch_embeddings, "(h w) c -> c h w", h=hw)
patch_embeddings = F.interpolate(patch_embeddings.unsqueeze(0), size=(h, w), mode="nearest").squeeze(0)
patch_embeddings = rearrange(patch_embeddings, "c h w -> (h w) c")
embeddings = torch.cat([cls_embeddings.unsqueeze(0), patch_embeddings], dim=0)
return embeddings
class CLIP(torch.nn.Module):
def __init__(self):
super().__init__()
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
# resample the patch embeddings to 56x56, take 896x896 input
embeddings = model.vision_model.embeddings.position_embedding.weight
embeddings = resample_position_embeddings(embeddings, 56, 56)
model.vision_model.embeddings.position_embedding.weight = nn.Parameter(embeddings)
model.vision_model.embeddings.position_ids = torch.arange(0, 1+56*56)
# processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
self.model = model.eval()
def new_forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hw = np.sqrt(hidden_states.shape[1] - 1).astype(int)
self.attn_output = rearrange(
hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
self.mlp_output = rearrange(
hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
self.block_output = rearrange(
hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
)
return outputs
setattr(
self.model.vision_model.encoder.layers[0].__class__, "forward", new_forward
)
@torch.no_grad()
def forward(self, x):
out = self.model.vision_model(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i, blk in enumerate(self.model.vision_model.encoder.layers):
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
attn_outputs = torch.stack(attn_outputs)
mlp_outputs = torch.stack(mlp_outputs)
block_outputs = torch.stack(block_outputs)
return attn_outputs, mlp_outputs, block_outputs
MODEL_DICT["CLIP(openai/clip-vit-base-patch16)"] = CLIP()
class MAE(timm.models.vision_transformer.VisionTransformer):
def __init__(self, **kwargs):
super(MAE, self).__init__(**kwargs)
sd = torch.hub.load_state_dict_from_url(
"https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth"
)
checkpoint_model = sd["model"]
state_dict = self.state_dict()
for k in ["head.weight", "head.bias"]:
if (
k in checkpoint_model
and checkpoint_model[k].shape != state_dict[k].shape
):
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
# load pre-trained model
msg = self.load_state_dict(checkpoint_model, strict=False)
print(msg)
# resample the patch embeddings to 56x56, take 896x896 input
pos_embed = self.pos_embed[0]
pos_embed = resample_position_embeddings(pos_embed, 56, 56)
self.pos_embed = nn.Parameter(pos_embed.unsqueeze(0))
self.img_size = (896, 896)
self.patch_embed.img_size = (896, 896)
self.requires_grad_(False)
self.eval()
def forward(self, x):
self.saved_attn_node = self.ls1(self.attn(self.norm1(x)))
x = x + self.saved_attn_node.clone()
self.saved_mlp_node = self.ls2(self.mlp(self.norm2(x)))
x = x + self.saved_mlp_node.clone()
self.saved_block_output = x.clone()
return x
setattr(self.blocks[0].__class__, "forward", forward)
def forward(self, x):
out = super().forward(x)
def remove_cls_and_reshape(x):
x = x.clone()
x = x[:, 1:]
hw = np.sqrt(x.shape[1]).astype(int)
x = rearrange(x, "b (h w) c -> b h w c", h=hw)
return x
attn_nodes = [remove_cls_and_reshape(block.saved_attn_node) for block in self.blocks]
mlp_nodes = [remove_cls_and_reshape(block.saved_mlp_node) for block in self.blocks]
block_outputs = [remove_cls_and_reshape(block.saved_block_output) for block in self.blocks]
return attn_nodes, mlp_nodes, block_outputs
MODEL_DICT["MAE(vit_base)"] = MAE()
def extract_features(images, model_name, node_type, layer):
use_cuda = torch.cuda.is_available()
resolution = (1024, 1024)
resolution_dict = {
"DiNO(dinov2_vitb14_reg)": (896, 896),
'CLIP(openai/clip-vit-base-patch16)': (896, 896),
'MAE(vit_base)': (896, 896),
}
if model_name in resolution_dict:
resolution = resolution_dict[model_name]
model = MODEL_DICT[model_name]
if use_cuda:
model = model.cuda()
outputs = []
for i in range(len(images)):
image = transform_image(images[i], resolution=resolution, use_cuda=use_cuda)
inp = image.unsqueeze(0)
attn_output, mlp_output, block_output = model(inp)
out_dict = {
"attn": attn_output,
"mlp": mlp_output,
"block": block_output,
}
out = out_dict[node_type]
out = out[layer]
outputs.append(out)
outputs = torch.cat(outputs, dim=0)
return outputs
if __name__ == '__main__':
inp = torch.rand(1, 3, 1024, 1024)
model = MAE()
out = model(inp)
print(out[0][0].shape, out[0][1].shape, out[0][2].shape)