ncut-pytorch / app.py
huzey's picture
update gpu
caaf478
raw
history blame
22.4 kB
from typing import Optional, Tuple
from einops import rearrange
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn
import numpy as np
import os
import time
import gradio as gr
import spaces
USE_CUDA = torch.cuda.is_available()
print("CUDA is available:", USE_CUDA)
def transform_images(images, resolution=(1024, 1024)):
images = [image.convert("RGB").resize(resolution) for image in images]
# Convert to torch tensor
images = [torch.tensor(np.array(image).transpose(2, 0, 1)).float() / 255 for image in images]
# Normalize
images = [(image - 0.5) / 0.5 for image in images]
images = torch.stack(images)
return images
class MobileSAM(nn.Module):
def __init__(self, **kwargs):
super().__init__(**kwargs)
from mobile_sam import sam_model_registry
url = 'https://raw.githubusercontent.com/ChaoningZhang/MobileSAM/master/weights/mobile_sam.pt'
model_type = "vit_t"
sam_checkpoint = "mobile_sam.pt"
if not os.path.exists(sam_checkpoint):
import requests
r = requests.get(url)
with open(sam_checkpoint, 'wb') as f:
f.write(r.content)
device = 'cuda' if USE_CUDA else 'cpu'
mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
def new_forward_fn(self, x):
shortcut = x
x = self.conv1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.act2(x)
self.attn_output = rearrange(x.clone(), "b c h w -> b h w c")
x = self.conv3(x)
self.mlp_output = rearrange(x.clone(), "b c h w -> b h w c")
x = self.drop_path(x)
x += shortcut
x = self.act3(x)
self.block_output = rearrange(x.clone(), "b c h w -> b h w c")
return x
setattr(mobile_sam.image_encoder.layers[0].blocks[0].__class__, "forward", new_forward_fn)
def new_forward_fn2(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
res_x = x
if H == self.window_size and W == self.window_size:
x = self.attn(x)
else:
x = x.view(B, H, W, C)
pad_b = (self.window_size - H %
self.window_size) % self.window_size
pad_r = (self.window_size - W %
self.window_size) % self.window_size
padding = pad_b > 0 or pad_r > 0
if padding:
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
pH, pW = H + pad_b, W + pad_r
nH = pH // self.window_size
nW = pW // self.window_size
# window partition
x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape(
B * nH * nW, self.window_size * self.window_size, C)
x = self.attn(x)
# window reverse
x = x.view(B, nH, nW, self.window_size, self.window_size,
C).transpose(2, 3).reshape(B, pH, pW, C)
if padding:
x = x[:, :H, :W].contiguous()
x = x.view(B, L, C)
hw = np.sqrt(x.shape[1]).astype(int)
self.attn_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw)
x = res_x + self.drop_path(x)
x = x.transpose(1, 2).reshape(B, C, H, W)
x = self.local_conv(x)
x = x.view(B, C, L).transpose(1, 2)
mlp_output = self.mlp(x)
self.mlp_output = rearrange(mlp_output.clone(), "b (h w) c -> b h w c", h=hw)
x = x + self.drop_path(mlp_output)
self.block_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw)
return x
setattr(mobile_sam.image_encoder.layers[1].blocks[0].__class__, "forward", new_forward_fn2)
mobile_sam.to(device=device)
mobile_sam.eval()
self.image_encoder = mobile_sam.image_encoder
@torch.no_grad()
def forward(self, x):
with torch.no_grad():
x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
out = self.image_encoder(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i_layer in range(len(self.image_encoder.layers)):
for i_block in range(len(self.image_encoder.layers[i_layer].blocks)):
blk = self.image_encoder.layers[i_layer].blocks[i_block]
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
return attn_outputs, mlp_outputs, block_outputs
mobilesam = MobileSAM()
def image_mobilesam_feature(
images,
node_type="block",
layer=-1,
):
if USE_CUDA:
images = images.cuda()
feat_extractor = mobilesam
if USE_CUDA:
feat_extractor = feat_extractor.cuda()
# attn_outputs, mlp_outputs, block_outputs = [], [], []
outputs = []
for i in range(images.shape[0]):
attn_output, mlp_output, block_output = feat_extractor(
images[i].unsqueeze(0)
)
out_dict = {
"attn": attn_output,
"mlp": mlp_output,
"block": block_output,
}
out = out_dict[node_type]
out = out[layer]
outputs.append(out.cpu())
outputs = torch.cat(outputs, dim=0)
mobilesam = mobilesam.cpu()
return outputs
class SAM(torch.nn.Module):
def __init__(self, **kwargs):
super().__init__(**kwargs)
from segment_anything import sam_model_registry, SamPredictor
from segment_anything.modeling.sam import Sam
checkpoint = "sam_vit_b_01ec64.pth"
if not os.path.exists(checkpoint):
checkpoint_url = 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth'
import requests
r = requests.get(checkpoint_url)
with open(checkpoint, 'wb') as f:
f.write(r.content)
sam: Sam = sam_model_registry["vit_b"](checkpoint=checkpoint)
from segment_anything.modeling.image_encoder import (
window_partition,
window_unpartition,
)
def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x
x = self.norm1(x)
# Window partition
if self.window_size > 0:
H, W = x.shape[1], x.shape[2]
x, pad_hw = window_partition(x, self.window_size)
x = self.attn(x)
# Reverse window partition
if self.window_size > 0:
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
self.attn_output = x.clone()
x = shortcut + x
mlp_outout = self.mlp(self.norm2(x))
self.mlp_output = mlp_outout.clone()
x = x + mlp_outout
self.block_output = x.clone()
return x
setattr(sam.image_encoder.blocks[0].__class__, "forward", new_block_forward)
self.image_encoder = sam.image_encoder
self.image_encoder.eval()
if USE_CUDA:
self.image_encoder = self.image_encoder.cuda()
@torch.no_grad()
def forward(self, x: torch.Tensor) -> torch.Tensor:
with torch.no_grad():
x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
out = self.image_encoder(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i, blk in enumerate(self.image_encoder.blocks):
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
attn_outputs = torch.stack(attn_outputs)
mlp_outputs = torch.stack(mlp_outputs)
block_outputs = torch.stack(block_outputs)
return attn_outputs, mlp_outputs, block_outputs
sam = SAM()
def image_sam_feature(
images,
node_type="block",
layer=-1,
):
if USE_CUDA:
images = images.cuda()
feat_extractor = sam
if USE_CUDA:
feat_extractor = feat_extractor.cuda()
# attn_outputs, mlp_outputs, block_outputs = [], [], []
outputs = []
for i in range(images.shape[0]):
attn_output, mlp_output, block_output = feat_extractor(
images[i].unsqueeze(0)
)
out_dict = {
"attn": attn_output,
"mlp": mlp_output,
"block": block_output,
}
out = out_dict[node_type]
out = out[layer]
outputs.append(out.cpu())
outputs = torch.cat(outputs, dim=0)
sam = sam.cpu()
return outputs
class DiNOv2(torch.nn.Module):
def __init__(self, ver="dinov2_vitb14_reg"):
super().__init__()
self.dinov2 = torch.hub.load("facebookresearch/dinov2", ver)
self.dinov2.requires_grad_(False)
self.dinov2.eval()
if USE_CUDA:
self.dinov2 = self.dinov2.cuda()
def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
def attn_residual_func(x):
return self.ls1(self.attn(self.norm1(x)))
def ffn_residual_func(x):
return self.ls2(self.mlp(self.norm2(x)))
attn_output = attn_residual_func(x)
self.attn_output = attn_output.clone()
x = x + attn_output
mlp_output = ffn_residual_func(x)
self.mlp_output = mlp_output.clone()
x = x + mlp_output
block_output = x
self.block_output = block_output.clone()
return x
setattr(self.dinov2.blocks[0].__class__, "forward", new_block_forward)
@torch.no_grad()
def forward(self, x):
out = self.dinov2(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i, blk in enumerate(self.dinov2.blocks):
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
attn_outputs = torch.stack(attn_outputs)
mlp_outputs = torch.stack(mlp_outputs)
block_outputs = torch.stack(block_outputs)
return attn_outputs, mlp_outputs, block_outputs
dinov2 = DiNOv2()
def image_dino_feature(images, node_type="block", layer=-1):
if USE_CUDA:
images = images.cuda()
feat_extractor = dinov2
if USE_CUDA:
feat_extractor = feat_extractor.cuda()
# attn_outputs, mlp_outputs, block_outputs = [], [], []
outputs = []
for i in range(images.shape[0]):
attn_output, mlp_output, block_output = feat_extractor(
images[i].unsqueeze(0)
)
out_dict = {
"attn": attn_output,
"mlp": mlp_output,
"block": block_output,
}
out = out_dict[node_type]
out = out[layer]
outputs.append(out.cpu())
outputs = torch.cat(outputs, dim=0)
outputs = rearrange(outputs[:, 5:, :], "b (h w) c -> b h w c", h=32, w=32)
dinov2 = dinov2.cpu()
return outputs
class CLIP(torch.nn.Module):
def __init__(self):
super().__init__()
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
# processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
self.model = model.eval()
if USE_CUDA:
self.model = self.model.cuda()
def new_forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
self.attn_output = hidden_states.clone()
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
self.mlp_output = hidden_states.clone()
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
self.block_output = hidden_states.clone()
return outputs
setattr(self.model.vision_model.encoder.layers[0].__class__, "forward", new_forward)
@torch.no_grad()
def forward(self, x):
out = self.model.vision_model(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i, blk in enumerate(self.model.vision_model.encoder.layers):
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
attn_outputs = torch.stack(attn_outputs)
mlp_outputs = torch.stack(mlp_outputs)
block_outputs = torch.stack(block_outputs)
return attn_outputs, mlp_outputs, block_outputs
clip = CLIP()
def image_clip_feature(
images, node_type="block", layer=-1
):
if USE_CUDA:
images = images.cuda()
feat_extractor = clip
if USE_CUDA:
feat_extractor = feat_extractor.cuda()
# attn_outputs, mlp_outputs, block_outputs = [], [], []
outputs = []
for i in range(images.shape[0]):
attn_output, mlp_output, block_output = feat_extractor(
images[i].unsqueeze(0)
)
out_dict = {
"attn": attn_output,
"mlp": mlp_output,
"block": block_output,
}
out = out_dict[node_type]
out = out[layer]
outputs.append(out.cpu())
outputs = torch.cat(outputs, dim=0)
clip = clip.cpu()
return outputs
import hashlib
import pickle
import sys
from collections import OrderedDict
# Cache dictionary with limited size
class LimitedSizeCache(OrderedDict):
def __init__(self, max_size_bytes):
self.max_size_bytes = max_size_bytes
self.current_size_bytes = 0
super().__init__()
def __setitem__(self, key, value):
item_size = self.get_item_size(value)
# Evict items until there is enough space
while self.current_size_bytes + item_size > self.max_size_bytes:
self.popitem(last=False)
super().__setitem__(key, value)
self.current_size_bytes += item_size
def __delitem__(self, key):
value = self[key]
super().__delitem__(key)
self.current_size_bytes -= self.get_item_size(value)
def get_item_size(self, value):
"""Estimate the size of the value in bytes."""
return sys.getsizeof(value)
# Initialize the cache with a 4GB limit
cache = LimitedSizeCache(max_size_bytes=4 * 1024 * 1024 * 1024) # 4GB
def compute_hash(*args, **kwargs):
"""Compute a unique hash based on the function arguments."""
hasher = hashlib.sha256()
pickled_args = pickle.dumps((args, kwargs))
hasher.update(pickled_args)
return hasher.hexdigest()
@spaces.GPU(duration=30)
def run_model_on_image(images, model_name="sam", node_type="block", layer=-1):
global USE_CUDA
USE_CUDA = True
if model_name == "SAM(sam_vit_b)":
if not USE_CUDA:
gr.warning("GPU not detected. Running SAM on CPU, ~30s/image.")
result = image_sam_feature(images, node_type=node_type, layer=layer)
elif model_name == 'MobileSAM':
result = image_mobilesam_feature(images, node_type=node_type, layer=layer)
elif model_name == "DiNO(dinov2_vitb14_reg)":
result = image_dino_feature(images, node_type=node_type, layer=layer)
elif model_name == "CLIP(openai/clip-vit-base-patch16)":
result = image_clip_feature(images, node_type=node_type, layer=layer)
else:
raise ValueError(f"Model {model_name} not supported.")
USE_CUDA = False
return result
def extract_features(images, model_name="mobilesam", node_type="block", layer=-1):
resolution_dict = {
"mobilesam": (1024, 1024),
"sam(sam_vit_b)": (1024, 1024),
"dinov2(dinov2_vitb14_reg)": (448, 448),
"clip(openai/clip-vit-base-patch16)": (224, 224),
}
images = transform_images(images, resolution=resolution_dict[model_name])
# Compute the cache key
cache_key = compute_hash(images, model_name, node_type, layer)
# Check if the result is already in the cache
if cache_key in cache:
print("Cache hit!")
return cache[cache_key]
result = run_model_on_image(images, model_name=model_name, node_type=node_type, layer=layer)
# Store the result in the cache
cache[cache_key] = result
return result
def compute_ncut(
features,
num_eig=100,
num_sample_ncut=10000,
affinity_focal_gamma=0.3,
knn_ncut=10,
knn_tsne=10,
num_sample_tsne=1000,
perplexity=500,
):
from ncut_pytorch import NCUT, rgb_from_tsne_3d
start = time.time()
eigvecs, eigvals = NCUT(
num_eig=num_eig,
num_sample=num_sample_ncut,
device="cpu",
affinity_focal_gamma=affinity_focal_gamma,
knn=knn_ncut,
).fit_transform(features.reshape(-1, features.shape[-1]))
print(f"NCUT time (cpu): {time.time() - start:.2f}s")
start = time.time()
X_3d, rgb = rgb_from_tsne_3d(
eigvecs,
num_sample=num_sample_tsne,
perplexity=perplexity,
knn=knn_tsne,
)
print(f"t-SNE time (cpu): {time.time() - start:.2f}s")
# print("input shape:", features.shape)
# print("output shape:", rgb.shape)
rgb = rgb.reshape(features.shape[:3] + (3,))
return rgb
def dont_use_too_much_green(image_rgb):
# make sure the foval 40% of the image is red leading
x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7)
y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7)
sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2))
sorted_indices = sum_values.argsort(descending=True)
image_rgb = image_rgb[:, :, :, sorted_indices]
return image_rgb
def to_pil_images(images):
return [
Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)).resize((256, 256), Image.NEAREST)
for image in images
]
def main_fn(
images,
model_name="SAM(sam_vit_b)",
layer=-1,
num_eig=100,
node_type="block",
affinity_focal_gamma=0.3,
num_sample_ncut=10000,
knn_ncut=10,
num_sample_tsne=1000,
knn_tsne=10,
perplexity=500,
):
if perplexity >= num_sample_tsne:
# raise gr.Error("Perplexity must be less than the number of samples for t-SNE.")
gr.Warning("Perplexity must be less than the number of samples for t-SNE.\n" f"Setting perplexity to {num_sample_tsne-1}.")
perplexity = num_sample_tsne - 1
images = [image[0] for image in images]
start = time.time()
features = extract_features(
images, model_name=model_name, node_type=node_type, layer=layer
)
print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
rgb = compute_ncut(
features,
num_eig=num_eig,
num_sample_ncut=num_sample_ncut,
affinity_focal_gamma=affinity_focal_gamma,
knn_ncut=knn_ncut,
knn_tsne=knn_tsne,
num_sample_tsne=num_sample_tsne,
perplexity=perplexity,
)
rgb = dont_use_too_much_green(rgb)
return to_pil_images(rgb)
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_5.jpg']
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_5.jpg']
demo = gr.Interface(
main_fn,
[
gr.Gallery(value=default_images, label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil"),
gr.Dropdown(["MobileSAM", "SAM(sam_vit_b)", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16)"], label="Model", value="MobileSAM", elem_id="model_name"),
gr.Slider(0, 11, step=1, label="Layer", value=11, elem_id="layer", info="which layer of the image backbone features"),
gr.Slider(1, 1000, step=1, label="Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more object parts, decrease for whole object'),
],
gr.Gallery(value=default_outputs, label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto"),
additional_inputs=[
gr.Dropdown(["attn", "mlp", "block"], label="Node type", value="block", elem_id="node_type", info="attn: attention output, mlp: mlp output, block: sum of residual stream"),
gr.Slider(0.01, 1, step=0.01, label="Affinity focal gamma", value=0.3, elem_id="affinity_focal_gamma", info="decrease for more aggressive cleaning on the affinity matrix"),
gr.Slider(100, 10000, step=100, label="num_sample (NCUT)", value=5000, elem_id="num_sample_ncut", info="for Nyström approximation"),
gr.Slider(1, 100, step=1, label="KNN (NCUT)", value=10, elem_id="knn_ncut", info="for Nyström approximation"),
gr.Slider(100, 1000, step=100, label="num_sample (t-SNE)", value=500, elem_id="num_sample_tsne", info="for Nyström approximation. Adding will slow down t-SNE quite a lot"),
gr.Slider(1, 100, step=1, label="KNN (t-SNE)", value=10, elem_id="knn_tsne", info="for Nyström approximation"),
gr.Slider(10, 500, step=10, label="Perplexity (t-SNE)", value=250, elem_id="perplexity", info="for t-SNE"),
]
)
demo.launch()