ncut-pytorch / backbone.py
huzey's picture
update model
68b0288
raw
history blame
12.8 kB
from typing import Optional, Tuple
from einops import rearrange
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn
import numpy as np
import os
import time
import gradio as gr
MODEL_DICT = {}
def transform_images(images, resolution=(1024, 1024)):
images = [image.convert("RGB").resize(resolution) for image in images]
# Convert to torch tensor
images = [
torch.tensor(np.array(image).transpose(2, 0, 1)).float() / 255
for image in images
]
# Normalize
images = [(image - 0.5) / 0.5 for image in images]
images = torch.stack(images)
return images
class MobileSAM(nn.Module):
def __init__(self, **kwargs):
super().__init__(**kwargs)
from mobile_sam import sam_model_registry
url = "https://raw.githubusercontent.com/ChaoningZhang/MobileSAM/master/weights/mobile_sam.pt"
model_type = "vit_t"
sam_checkpoint = "mobile_sam.pt"
if not os.path.exists(sam_checkpoint):
import requests
r = requests.get(url)
with open(sam_checkpoint, "wb") as f:
f.write(r.content)
mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
def new_forward_fn(self, x):
shortcut = x
x = self.conv1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.act2(x)
self.attn_output = rearrange(x.clone(), "b c h w -> b h w c")
x = self.conv3(x)
self.mlp_output = rearrange(x.clone(), "b c h w -> b h w c")
x = self.drop_path(x)
x += shortcut
x = self.act3(x)
self.block_output = rearrange(x.clone(), "b c h w -> b h w c")
return x
setattr(
mobile_sam.image_encoder.layers[0].blocks[0].__class__,
"forward",
new_forward_fn,
)
def new_forward_fn2(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
res_x = x
if H == self.window_size and W == self.window_size:
x = self.attn(x)
else:
x = x.view(B, H, W, C)
pad_b = (self.window_size - H % self.window_size) % self.window_size
pad_r = (self.window_size - W % self.window_size) % self.window_size
padding = pad_b > 0 or pad_r > 0
if padding:
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
pH, pW = H + pad_b, W + pad_r
nH = pH // self.window_size
nW = pW // self.window_size
# window partition
x = (
x.view(B, nH, self.window_size, nW, self.window_size, C)
.transpose(2, 3)
.reshape(B * nH * nW, self.window_size * self.window_size, C)
)
x = self.attn(x)
# window reverse
x = (
x.view(B, nH, nW, self.window_size, self.window_size, C)
.transpose(2, 3)
.reshape(B, pH, pW, C)
)
if padding:
x = x[:, :H, :W].contiguous()
x = x.view(B, L, C)
hw = np.sqrt(x.shape[1]).astype(int)
self.attn_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw)
x = res_x + self.drop_path(x)
x = x.transpose(1, 2).reshape(B, C, H, W)
x = self.local_conv(x)
x = x.view(B, C, L).transpose(1, 2)
mlp_output = self.mlp(x)
self.mlp_output = rearrange(
mlp_output.clone(), "b (h w) c -> b h w c", h=hw
)
x = x + self.drop_path(mlp_output)
self.block_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw)
return x
setattr(
mobile_sam.image_encoder.layers[1].blocks[0].__class__,
"forward",
new_forward_fn2,
)
mobile_sam.eval()
self.image_encoder = mobile_sam.image_encoder
@torch.no_grad()
def forward(self, x):
with torch.no_grad():
x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
out = self.image_encoder(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i_layer in range(len(self.image_encoder.layers)):
for i_block in range(len(self.image_encoder.layers[i_layer].blocks)):
blk = self.image_encoder.layers[i_layer].blocks[i_block]
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
return attn_outputs, mlp_outputs, block_outputs
MODEL_DICT["MobileSAM"] = MobileSAM()
class SAM(torch.nn.Module):
def __init__(self, **kwargs):
super().__init__(**kwargs)
from segment_anything import sam_model_registry, SamPredictor
from segment_anything.modeling.sam import Sam
checkpoint = "sam_vit_b_01ec64.pth"
if not os.path.exists(checkpoint):
checkpoint_url = (
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
)
import requests
r = requests.get(checkpoint_url)
with open(checkpoint, "wb") as f:
f.write(r.content)
sam: Sam = sam_model_registry["vit_b"](checkpoint=checkpoint)
from segment_anything.modeling.image_encoder import (
window_partition,
window_unpartition,
)
def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x
x = self.norm1(x)
# Window partition
if self.window_size > 0:
H, W = x.shape[1], x.shape[2]
x, pad_hw = window_partition(x, self.window_size)
x = self.attn(x)
# Reverse window partition
if self.window_size > 0:
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
self.attn_output = x.clone()
x = shortcut + x
mlp_outout = self.mlp(self.norm2(x))
self.mlp_output = mlp_outout.clone()
x = x + mlp_outout
self.block_output = x.clone()
return x
setattr(sam.image_encoder.blocks[0].__class__, "forward", new_block_forward)
self.image_encoder = sam.image_encoder
self.image_encoder.eval()
@torch.no_grad()
def forward(self, x: torch.Tensor) -> torch.Tensor:
with torch.no_grad():
x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
out = self.image_encoder(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i, blk in enumerate(self.image_encoder.blocks):
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
attn_outputs = torch.stack(attn_outputs)
mlp_outputs = torch.stack(mlp_outputs)
block_outputs = torch.stack(block_outputs)
return attn_outputs, mlp_outputs, block_outputs
MODEL_DICT["SAM(sam_vit_b)"] = SAM()
class DiNOv2(torch.nn.Module):
def __init__(self, ver="dinov2_vitb14_reg"):
super().__init__()
self.dinov2 = torch.hub.load("facebookresearch/dinov2", ver)
self.dinov2.requires_grad_(False)
self.dinov2.eval()
def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
def attn_residual_func(x):
return self.ls1(self.attn(self.norm1(x)))
def ffn_residual_func(x):
return self.ls2(self.mlp(self.norm2(x)))
attn_output = attn_residual_func(x)
hw = np.sqrt(attn_output.shape[1] - 5).astype(int)
self.attn_output = rearrange(
attn_output.clone()[:, 5:], "b (h w) c -> b h w c", h=hw
)
x = x + attn_output
mlp_output = ffn_residual_func(x)
self.mlp_output = rearrange(
mlp_output.clone()[:, 5:], "b (h w) c -> b h w c", h=hw
)
x = x + mlp_output
block_output = x
self.block_output = rearrange(
block_output.clone()[:, 5:], "b (h w) c -> b h w c", h=hw
)
return x
setattr(self.dinov2.blocks[0].__class__, "forward", new_block_forward)
@torch.no_grad()
def forward(self, x):
out = self.dinov2(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i, blk in enumerate(self.dinov2.blocks):
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
attn_outputs = torch.stack(attn_outputs)
mlp_outputs = torch.stack(mlp_outputs)
block_outputs = torch.stack(block_outputs)
return attn_outputs, mlp_outputs, block_outputs
MODEL_DICT["DiNO(dinov2_vitb14_reg)"] = DiNOv2()
class CLIP(torch.nn.Module):
def __init__(self):
super().__init__()
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
# processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
self.model = model.eval()
def new_forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hw = np.sqrt(hidden_states.shape[1] - 1).astype(int)
self.attn_output = rearrange(
hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
self.mlp_output = rearrange(
hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
self.block_output = rearrange(
hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
)
return outputs
setattr(
self.model.vision_model.encoder.layers[0].__class__, "forward", new_forward
)
@torch.no_grad()
def forward(self, x):
out = self.model.vision_model(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i, blk in enumerate(self.model.vision_model.encoder.layers):
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
attn_outputs = torch.stack(attn_outputs)
mlp_outputs = torch.stack(mlp_outputs)
block_outputs = torch.stack(block_outputs)
return attn_outputs, mlp_outputs, block_outputs
MODEL_DICT["CLIP(openai/clip-vit-base-patch16)"] = CLIP()
def extract_features(images, model_name, node_type, layer):
resolution_dict = {
"MobileSAM": (1024, 1024),
"SAM(sam_vit_b)": (1024, 1024),
"DiNO(dinov2_vitb14_reg)": (448, 448),
"CLIP(openai/clip-vit-base-patch16)": (224, 224),
}
images = transform_images(images, resolution=resolution_dict[model_name])
model = MODEL_DICT[model_name]
use_cuda = torch.cuda.is_available()
if use_cuda:
model = model.cuda()
outputs = []
for i in range(images.shape[0]):
inp = images[i].unsqueeze(0)
if use_cuda:
inp = inp.cuda()
attn_output, mlp_output, block_output = model(inp)
out_dict = {
"attn": attn_output,
"mlp": mlp_output,
"block": block_output,
}
out = out_dict[node_type]
out = out[layer]
outputs.append(out)
outputs = torch.cat(outputs, dim=0)
return outputs