Spaces:
Running
on
Zero
Running
on
Zero
# Author: Huzheng Yang | |
# %% | |
import copy | |
from datetime import datetime | |
import pickle | |
from functools import partial | |
from io import BytesIO | |
import json | |
import os | |
import uuid | |
import zipfile | |
import multiprocessing as mp | |
from einops import rearrange | |
from matplotlib import pyplot as plt | |
import matplotlib | |
USE_HUGGINGFACE_ZEROGPU = os.getenv("USE_HUGGINGFACE_ZEROGPU", "False").lower() in ["true", "1", "yes"] | |
DOWNLOAD_ALL_MODELS_DATASETS = os.getenv("DOWNLOAD_ALL_MODELS_DATASETS", "False").lower() in ["true", "1", "yes"] | |
if USE_HUGGINGFACE_ZEROGPU: # huggingface ZeroGPU, dynamic GPU allocation | |
try: | |
import spaces | |
except: | |
USE_HUGGINGFACE_ZEROGPU = False | |
if USE_HUGGINGFACE_ZEROGPU: | |
BATCH_SIZE = 1 | |
else: # run on local machine | |
BATCH_SIZE = 1 | |
import gradio as gr | |
import torch | |
import torch.nn.functional as F | |
from PIL import Image | |
import numpy as np | |
import time | |
import threading | |
from ncut_pytorch.backbone import extract_features, load_model | |
from ncut_pytorch.backbone import MODEL_DICT, LAYER_DICT, RES_DICT | |
from ncut_pytorch import NCUT | |
from ncut_pytorch import eigenvector_to_rgb | |
DATASETS = { | |
'Common': [ | |
('mrm8488/ImageNet1K-val', 1000), | |
('UCSC-VLAA/Recap-COCO-30K', None), | |
('nateraw/pascal-voc-2012', None), | |
('johnowhitaker/imagenette2-320', 10), | |
('Multimodal-Fatima/CUB_train', 200), | |
('saragag/FlBirds', 7), | |
('microsoft/cats_vs_dogs', None), | |
('Robotkid2696/food_classification', 20), | |
('JapanDegitalMaterial/Places_in_Japan', None), | |
], | |
'Ego': [ | |
('EgoThink/EgoThink', None), | |
], | |
'Face': [ | |
('nielsr/CelebA-faces', None), | |
('huggan/anime-faces', None), | |
], | |
'Pose': [ | |
('sayakpaul/poses-controlnet-dataset', None), | |
('razdab/sign_pose_M', None), | |
('Marqo/deepfashion-multimodal', None), | |
('Fiacre/small-animal-poses-controlnet-dataset', None), | |
('junjuice0/vtuber-tachi-e', None), | |
], | |
'Hand': [ | |
('trashsock/hands-images', 8), | |
('dduka/guitar-chords-v3', None), | |
], | |
'Satellite': [ | |
('arakesh/deepglobe-2448x2448', None), | |
('tanganke/eurosat', 10), | |
('wangyi111/EuroSAT-SAR', None), | |
('efoley/sar_tile_512', None), | |
], | |
'Medical': [ | |
('Mahadih534/Chest_CT-Scan_images-Dataset', None), | |
('TrainingDataPro/chest-x-rays', None), | |
('hongrui/mimic_chest_xray_v_1', None), | |
('sartajbhuvaji/Brain-Tumor-Classification', 4), | |
('Falah/Alzheimer_MRI', 4), | |
('Leonardo6/path-vqa', None), | |
('Itsunori/path-vqa_jap', None), | |
('ruby-jrl/isic-2024-2', None), | |
('VRJBro/lung_cancer_dataset', 5), | |
('keremberke/blood-cell-object-detection', None) | |
], | |
'Miscs': [ | |
('yashvoladoddi37/kanjienglish', None), | |
('Borismile/Anime-dataset', None), | |
('jainr3/diffusiondb-pixelart', None), | |
('jlbaker361/dcgan-eval-creative_gan_256_256', None), | |
('Francesco/csgo-videogame', None), | |
('Francesco/apex-videogame', None), | |
('huggan/pokemon', None), | |
('huggan/few-shot-universe', None), | |
('huggan/flowers-102-categories', None), | |
('huggan/inat_butterflies_top10k', None), | |
] | |
} | |
CENTER_CROP_DATASETS = ["razdab/sign_pose_M"] | |
from datasets import load_dataset | |
def download_all_datasets(): | |
for cat in DATASETS.keys(): | |
for tup in DATASETS[cat]: | |
name = tup[0] | |
print(f"Downloading {name}") | |
try: | |
load_dataset(name, trust_remote_code=True) | |
except Exception as e: | |
print(f"Error downloading {name}: {e}") | |
def compute_ncut( | |
features, | |
num_eig=100, | |
num_sample_ncut=10000, | |
affinity_focal_gamma=0.3, | |
knn_ncut=10, | |
knn_tsne=10, | |
embedding_method="UMAP", | |
embedding_metric='euclidean', | |
num_sample_tsne=300, | |
perplexity=150, | |
n_neighbors=150, | |
min_dist=0.1, | |
sampling_method="QuickFPS", | |
metric="cosine", | |
indirect_connection=True, | |
make_orthogonal=False, | |
progess_start=0.4, | |
): | |
progress = gr.Progress() | |
logging_str = "" | |
num_nodes = np.prod(features.shape[:-1]) | |
if num_nodes / 2 < num_eig: | |
# raise gr.Error("Number of eigenvectors should be less than half the number of nodes.") | |
gr.Warning("Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.") | |
num_eig = num_nodes // 2 - 1 | |
logging_str += f"Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.\n" | |
start = time.time() | |
progress(progess_start+0.0, desc="NCut") | |
eigvecs, eigvals = NCUT( | |
num_eig=num_eig, | |
num_sample=num_sample_ncut, | |
device="cuda" if torch.cuda.is_available() else "cpu", | |
affinity_focal_gamma=affinity_focal_gamma, | |
knn=knn_ncut, | |
sample_method=sampling_method, | |
distance=metric, | |
normalize_features=False, | |
indirect_connection=indirect_connection, | |
make_orthogonal=make_orthogonal, | |
).fit_transform(features.reshape(-1, features.shape[-1])) | |
# print(f"NCUT time: {time.time() - start:.2f}s") | |
logging_str += f"NCUT time: {time.time() - start:.2f}s\n" | |
start = time.time() | |
progress(progess_start+0.01, desc="spectral-tSNE") | |
_, rgb = eigenvector_to_rgb( | |
eigvecs, | |
method=embedding_method, | |
metric=embedding_metric, | |
num_sample=num_sample_tsne, | |
perplexity=perplexity, | |
n_neighbors=n_neighbors, | |
min_distance=min_dist, | |
knn=knn_tsne, | |
device="cuda" if torch.cuda.is_available() else "cpu", | |
) | |
logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n" | |
rgb = rgb.reshape(features.shape[:-1] + (3,)) | |
return rgb, logging_str, eigvecs | |
def compute_ncut_directed( | |
features_1, | |
features_2, | |
num_eig=100, | |
num_sample_ncut=10000, | |
affinity_focal_gamma=0.3, | |
knn_ncut=10, | |
knn_tsne=10, | |
embedding_method="UMAP", | |
embedding_metric='euclidean', | |
num_sample_tsne=300, | |
perplexity=150, | |
n_neighbors=150, | |
min_dist=0.1, | |
sampling_method="QuickFPS", | |
metric="cosine", | |
indirect_connection=False, | |
make_orthogonal=False, | |
make_symmetric=False, | |
progess_start=0.4, | |
): | |
# print("Using directed_ncut") | |
# print("features_1.shape", features_1.shape) | |
# print("features_2.shape", features_2.shape) | |
from directed_ncut import nystrom_ncut | |
progress = gr.Progress() | |
logging_str = "" | |
num_nodes = np.prod(features_1.shape[:-2]) | |
if num_nodes / 2 < num_eig: | |
# raise gr.Error("Number of eigenvectors should be less than half the number of nodes.") | |
gr.Warning("Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.") | |
num_eig = num_nodes // 2 - 1 | |
logging_str += f"Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.\n" | |
start = time.time() | |
progress(progess_start+0.0, desc="NCut") | |
n_features = features_1.shape[-2] | |
_features_1 = rearrange(features_1, "b h w d c -> (b h w) (d c)") | |
_features_2 = rearrange(features_2, "b h w d c -> (b h w) (d c)") | |
eigvecs, eigvals, _ = nystrom_ncut( | |
_features_1, | |
features_B=_features_2, | |
num_eig=num_eig, | |
num_sample=num_sample_ncut, | |
device="cuda" if torch.cuda.is_available() else "cpu", | |
affinity_focal_gamma=affinity_focal_gamma, | |
knn=knn_ncut, | |
sample_method=sampling_method, | |
distance=metric, | |
normalize_features=False, | |
indirect_connection=indirect_connection, | |
make_orthogonal=make_orthogonal, | |
make_symmetric=make_symmetric, | |
n_features=n_features, | |
) | |
# print(f"NCUT time: {time.time() - start:.2f}s") | |
logging_str += f"NCUT time: {time.time() - start:.2f}s\n" | |
start = time.time() | |
progress(progess_start+0.01, desc="spectral-tSNE") | |
_, rgb = eigenvector_to_rgb( | |
eigvecs, | |
method=embedding_method, | |
metric=embedding_metric, | |
num_sample=num_sample_tsne, | |
perplexity=perplexity, | |
n_neighbors=n_neighbors, | |
min_distance=min_dist, | |
knn=knn_tsne, | |
device="cuda" if torch.cuda.is_available() else "cpu", | |
) | |
logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n" | |
rgb = rgb.reshape(features_1.shape[:3] + (3,)) | |
return rgb, logging_str, eigvecs | |
def dont_use_too_much_green(image_rgb): | |
# make sure the foval 40% of the image is red leading | |
x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7) | |
y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7) | |
sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2)) | |
sorted_indices = sum_values.argsort(descending=True) | |
image_rgb = image_rgb[:, :, :, sorted_indices] | |
return image_rgb | |
def to_pil_images(images, target_size=512, resize=True): | |
size = images[0].shape[1] | |
multiplier = target_size // size | |
res = int(size * multiplier) | |
pil_images = [ | |
Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)) | |
for image in images | |
] | |
if resize: | |
pil_images = [ | |
image.resize((res, res), Image.Resampling.NEAREST) | |
for image in pil_images | |
] | |
return pil_images | |
def pil_images_to_video(images, output_path, fps=5): | |
# from pil images to numpy | |
images = [np.array(image) for image in images] | |
# print("Saving video to", output_path) | |
import cv2 | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
height, width, _ = images[0].shape | |
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) | |
for image in images: | |
out.write(cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) | |
out.release() | |
return output_path | |
# save up to 100 videos in disk | |
class VideoCache: | |
def __init__(self, max_videos=100): | |
self.max_videos = max_videos | |
self.videos = {} | |
def add_video(self, video_path): | |
if len(self.videos) >= self.max_videos: | |
pop_path = self.videos.popitem()[0] | |
try: | |
os.remove(pop_path) | |
except: | |
pass | |
self.videos[video_path] = video_path | |
def get_video(self, video_path): | |
return self.videos.get(video_path, None) | |
video_cache = VideoCache() | |
def get_random_path(length=10): | |
import random | |
import string | |
name = ''.join(random.choices(string.ascii_lowercase + string.digits, k=length)) | |
path = f'/tmp/{name}.mp4' | |
return path | |
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/guitar_ego.jpg', './images/image_5.jpg'] | |
default_outputs = ['./images/image-1.webp', './images/image-2.webp', './images/image-3.webp', './images/image-4.webp', './images/image-5.webp'] | |
# default_outputs_independent = ['./images/image-6.webp', './images/image-7.webp', './images/image-8.webp', './images/image-9.webp', './images/image-10.webp'] | |
default_outputs_independent = [] | |
downscaled_images = ['./images/image_0_small.jpg', './images/image_1_small.jpg', './images/image_2_small.jpg', './images/image_3_small.jpg', './images/image_5_small.jpg'] | |
downscaled_outputs = default_outputs | |
example_items = downscaled_images[:3] + downscaled_outputs[:3] | |
def run_alignedthreemodelattnnodes(images, model, batch_size=16): | |
use_cuda = torch.cuda.is_available() | |
device = torch.device("cuda" if use_cuda else "cpu") | |
if use_cuda: | |
model = model.to(device) | |
chunked_idxs = torch.split(torch.arange(images.shape[0]), batch_size) | |
outputs = [] | |
for idxs in chunked_idxs: | |
inp = images[idxs] | |
if use_cuda: | |
inp = inp.to(device) | |
out = model(inp) | |
# normalize before save | |
out = F.normalize(out, dim=-1) | |
outputs.append(out.cpu().float()) | |
outputs = torch.cat(outputs, dim=0) | |
return outputs | |
def _reds_colormap(image): | |
# normed_data = image / image.max() # Normalize to [0, 1] | |
normed_data = image | |
colormap = matplotlib.colormaps['inferno'] # Get the Reds colormap | |
colored_image = colormap(normed_data) # Apply colormap | |
return (colored_image[..., :3] * 255).astype(np.uint8) # Convert to RGB | |
# heatmap images | |
def apply_reds_colormap(images, size): | |
# for i_image in range(images.shape[0]): | |
# images[i_image] -= images[i_image].min() | |
# images[i_image] /= images[i_image].max() | |
# normed_data = [_reds_colormap(images[i]) for i in range(images.shape[0])] | |
# normed_data = np.stack(normed_data) | |
normed_data = _reds_colormap(images) | |
normed_data = torch.tensor(normed_data).float() | |
normed_data = rearrange(normed_data, "b h w c -> b c h w") | |
normed_data = torch.nn.functional.interpolate(normed_data, size=size, mode="nearest") | |
normed_data = rearrange(normed_data, "b c h w -> b h w c") | |
normed_data = normed_data.cpu().numpy().astype(np.uint8) | |
return normed_data | |
# Blend heatmap with the original image | |
def blend_image_with_heatmap(image, heatmap, opacity1=0.5, opacity2=0.5): | |
blended = (1 - opacity1) * image + opacity2 * heatmap | |
return blended.astype(np.uint8) | |
def segment_fg_bg(images): | |
images = F.interpolate(images, (224, 224), mode="bilinear") | |
# model = load_alignedthreemodel() | |
model = load_model("CLIP(ViT-B-16/openai)") | |
from ncut_pytorch.backbone import resample_position_embeddings | |
pos_embed = model.model.visual.positional_embedding | |
pos_embed = resample_position_embeddings(pos_embed, 14, 14) | |
model.model.visual.positional_embedding = torch.nn.Parameter(pos_embed) | |
batch_size = 4 | |
chunk_idxs = torch.split(torch.arange(images.shape[0]), batch_size) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model.to(device) | |
means = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device) | |
stds = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device) | |
fg_acts, bg_acts = [], [] | |
for chunk_idx in chunk_idxs: | |
with torch.no_grad(): | |
input_images = images[chunk_idx].to(device) | |
# transform the input images | |
input_images = (input_images - means) / stds | |
# output = model(input_images)[:, 5] | |
output = model(input_images)['attn'][6] # [B, H=14, W=14, C] | |
fg_act = output[:, 6, 6].mean(0) | |
bg_act = output[:, 0, 0].mean(0) | |
fg_acts.append(fg_act) | |
bg_acts.append(bg_act) | |
fg_act = torch.stack(fg_acts, dim=0).mean(0) | |
bg_act = torch.stack(bg_acts, dim=0).mean(0) | |
fg_act = F.normalize(fg_act, dim=-1) | |
bg_act = F.normalize(bg_act, dim=-1) | |
# ref_image = default_images[0] | |
# image = Image.open(ref_image).convert("RGB").resize((224, 224), Image.Resampling.BILINEAR) | |
# image = torch.tensor(np.array(image)).permute(2, 0, 1).float().to(device) | |
# image = (image / 255.0 - means) / stds | |
# output = model(image)['attn'][6][0] | |
# # print(output.shape) | |
# # bg on the center | |
# fg_act = output[5, 5] | |
# # bg on the bottom left | |
# bg_act = output[0, 0] | |
# fg_act = F.normalize(fg_act, dim=-1) | |
# bg_act = F.normalize(bg_act, dim=-1) | |
# print(images.mean(), images.std()) | |
fg_act, bg_act = fg_act.to(device), bg_act.to(device) | |
chunk_idxs = torch.split(torch.arange(images.shape[0]), batch_size) | |
heatmap_fgs, heatmap_bgs = [], [] | |
for chunk_idx in chunk_idxs: | |
with torch.no_grad(): | |
input_images = images[chunk_idx].to(device) | |
# transform the input images | |
input_images = (input_images - means) / stds | |
# output = model(input_images)[:, 5] | |
output = model(input_images)['attn'][6] | |
output = F.normalize(output, dim=-1) | |
heatmap_fg = output @ fg_act[:, None] # [B, H, W, 1] | |
heatmap_bg = output @ bg_act[:, None] # [B, H, W, 1] | |
heatmap_fgs.append(heatmap_fg.cpu()) | |
heatmap_bgs.append(heatmap_bg.cpu()) | |
heatmap_fg = torch.cat(heatmap_fgs, dim=0) | |
heatmap_bg = torch.cat(heatmap_bgs, dim=0) | |
return heatmap_fg, heatmap_bg | |
def make_cluster_plot(eigvecs, images, h=64, w=64, progess_start=0.6, advanced=False, clusters=50, eig_idx=None, title='cluster'): | |
if clusters == 0: | |
return [], [] | |
progress = gr.Progress() | |
progress(progess_start, desc="Finding Clusters by FPS") | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
eigvecs = eigvecs.to(device) | |
from ncut_pytorch.ncut_pytorch import farthest_point_sampling | |
magnitude = torch.norm(eigvecs, dim=-1) | |
# gr.Info("Finding Clusters by FPS, no magnitude filtering") | |
top_p_idx = torch.arange(eigvecs.shape[0]) | |
if eig_idx is not None: | |
top_p_idx = eig_idx | |
# gr.Info("Finding Clusters by FPS, with magnitude filtering") | |
# p = 0.8 | |
# top_p_idx = magnitude.argsort(descending=True)[:int(p * magnitude.shape[0])] | |
ret_magnitude = magnitude.reshape(-1, h, w) | |
num_samples = 300 | |
if num_samples > top_p_idx.shape[0]: | |
num_samples = top_p_idx.shape[0] | |
fps_idx = farthest_point_sampling(eigvecs[top_p_idx], num_samples) | |
fps_idx = top_p_idx[fps_idx] | |
# fps round 2 on the heatmap | |
left = eigvecs[fps_idx, :].clone() | |
right = eigvecs.clone() | |
left = F.normalize(left, dim=-1) | |
right = F.normalize(right, dim=-1) | |
heatmap = left @ right.T | |
heatmap = F.normalize(heatmap, dim=-1) # [300, N_pixel] PCA-> [300, 8] | |
num_samples = clusters + 20 # 100/120 | |
if num_samples > fps_idx.shape[0]: | |
num_samples = fps_idx.shape[0] | |
r2_fps_idx = farthest_point_sampling(heatmap, num_samples) | |
fps_idx = fps_idx[r2_fps_idx] | |
# downsample to 256x256 | |
images = F.interpolate(images, (256, 256), mode="bilinear") | |
images = images.cpu().numpy() | |
images = images.transpose(0, 2, 3, 1) | |
images = images * 255 | |
images = images.astype(np.uint8) | |
# sort the fps_idx by the mean of the heatmap | |
fps_heatmaps = {} | |
sort_values = [] | |
top3_image_idx = {} | |
top10_image_idx = {} | |
for _, idx in enumerate(fps_idx): | |
heatmap = F.cosine_similarity(eigvecs, eigvecs[idx][None], dim=-1) | |
# def top_percentile(tensor, p=0.8, max_size=10000): | |
# tensor = tensor.clone().flatten() | |
# if tensor.shape[0] > max_size: | |
# tensor = tensor[torch.randperm(tensor.shape[0])[:max_size]] | |
# return tensor.quantile(p) | |
# top_p = top_percentile(heatmap, p=0.5) | |
top_p = 0.9 | |
heatmap = heatmap.reshape(-1, h, w) | |
mask = (heatmap > top_p).float() | |
# take top 3 masks only | |
mask_sort_values = mask.mean((1, 2)) | |
_sort_value2 = (heatmap > 0.1).float().mean((1, 2)) * 0.1 | |
mask_sort_values += _sort_value2 | |
mask_sort_idx = torch.argsort(mask_sort_values, descending=True) | |
mask = mask[mask_sort_idx[:3]] | |
sort_values.append(mask.mean().item()) | |
# fps_heatmaps[idx.item()] = heatmap.cpu() | |
fps_heatmaps[idx.item()] = heatmap[mask_sort_idx[:6]].cpu() | |
top3_image_idx[idx.item()] = mask_sort_idx[:3] | |
top10_image_idx[idx.item()] = mask_sort_idx[:6] | |
# do the sorting | |
_sort_idx = torch.tensor(sort_values).argsort(descending=True) | |
fps_idx = fps_idx[_sort_idx] | |
# reverse the fps_idx | |
# fps_idx = fps_idx.flip(0) | |
# discard the big clusters | |
# gr.Info("Discarding the biggest 10 clusters") | |
# fps_idx = fps_idx[10:] | |
# gr.Info("Not discarding the biggest 10 clusters") | |
# gr.Info("Discarding the smallest 30 out of 80 sampled clusters") | |
if not advanced: | |
# shuffle the fps_idx | |
fps_idx = fps_idx[torch.randperm(fps_idx.shape[0])] | |
def plot_cluster_images(fps_idx_chunk, chunk_idx): | |
fig, axs = plt.subplots(3, 5, figsize=(15, 9)) if not advanced else plt.subplots(6, 5, figsize=(15, 18)) | |
for ax in axs.flatten(): | |
ax.axis("off") | |
for j, idx in enumerate(fps_idx_chunk): | |
heatmap = fps_heatmaps[idx.item()] | |
size = (images.shape[1], images.shape[2]) | |
heatmap = apply_reds_colormap(heatmap, size) | |
image_idxs = top3_image_idx[idx.item()] if not advanced else top10_image_idx[idx.item()] | |
for i, image_idx in enumerate(image_idxs): | |
_heatmap = blend_image_with_heatmap(images[image_idx], heatmap[i]) | |
axs[i, j].imshow(_heatmap) | |
if i == 0: | |
axs[i, j].set_title(f"{title} {chunk_idx * 5 + j + 1}", fontsize=24) | |
plt.tight_layout(h_pad=0.5, w_pad=0.3) | |
filename = f"{datetime.now():%Y%m%d%H%M%S%f}_{uuid.uuid4().hex}" | |
tmp_path = f"/tmp/{filename}.png" | |
plt.savefig(tmp_path, bbox_inches='tight', dpi=72) | |
img = Image.open(tmp_path).convert("RGB") | |
os.remove(tmp_path) | |
plt.close() | |
return img | |
fig_images = [] | |
num_plots = clusters // 5 | |
plot_step_float = (1.0 - progess_start) / num_plots | |
fps_idx_chunks = [fps_idx[i*5:(i+1)*5] for i in range(num_plots)] | |
# with mp.Pool(processes=mp.cpu_count()) as pool: | |
# results = [pool.apply_async(plot_cluster_images, args=(chunk, i)) for i, chunk in enumerate(fps_idx_chunks)] | |
# for i, result in enumerate(results): | |
# progress(progess_start + i * plot_step_float, desc=f"Plotted {title}") | |
# fig_images.append(result.get()) | |
for i, chunk in enumerate(fps_idx_chunks): | |
progress(progess_start + i * plot_step_float, desc=f"Plotted {title}") | |
fig_images.append(plot_cluster_images(chunk, i)) | |
return fig_images, ret_magnitude | |
def make_cluster_plot_advanced(eigvecs, images, h=64, w=64): | |
heatmap_fg, heatmap_bg = segment_fg_bg(images.clone()) | |
heatmap_bg = rearrange(heatmap_bg, 'b h w c -> b c h w') | |
heatmap_fg = rearrange(heatmap_fg, 'b h w c -> b c h w') | |
heatmap_fg = F.interpolate(heatmap_fg, (h, w), mode="bilinear") | |
heatmap_bg = F.interpolate(heatmap_bg, (h, w), mode="bilinear") | |
heatmap_fg = heatmap_fg.flatten() | |
heatmap_bg = heatmap_bg.flatten() | |
fg_minus_bg = heatmap_fg - heatmap_bg | |
fg_mask = fg_minus_bg > fg_minus_bg.quantile(0.8) | |
bg_mask = fg_minus_bg < fg_minus_bg.quantile(0.2) | |
# fg_mask = heatmap_fg > heatmap_fg.quantile(0.8) | |
# bg_mask = heatmap_bg > heatmap_bg.quantile(0.8) | |
other_mask = ~(fg_mask | bg_mask) | |
fg_idx = torch.arange(heatmap_fg.shape[0])[fg_mask] | |
bg_idx = torch.arange(heatmap_bg.shape[0])[bg_mask] | |
other_idx = torch.arange(heatmap_fg.shape[0])[other_mask] | |
fg_images, _ = make_cluster_plot(eigvecs, images, h=h, w=w, advanced=True, clusters=100, eig_idx=fg_idx, title="fg") | |
bg_images, _ = make_cluster_plot(eigvecs, images, h=h, w=w, advanced=True, clusters=20, eig_idx=bg_idx, title="bg") | |
other_images, _ = make_cluster_plot(eigvecs, images, h=h, w=w, advanced=True, clusters=0, eig_idx=other_idx, title="other") | |
cluster_images = fg_images + bg_images + other_images | |
magitude = torch.norm(eigvecs, dim=-1) | |
magitude = magitude.reshape(-1, h, w) | |
# magitude = fg_minus_bg.reshape(-1, h, w) #TODO | |
return cluster_images, magitude | |
def ncut_run( | |
model, | |
images, | |
model_name="DiNO(dino_vitb8_448)", | |
layer=10, | |
num_eig=100, | |
node_type="block", | |
affinity_focal_gamma=0.5, | |
num_sample_ncut=10000, | |
knn_ncut=10, | |
embedding_method="tsne_3d", | |
embedding_metric='euclidean', | |
num_sample_tsne=1000, | |
knn_tsne=10, | |
perplexity=500, | |
n_neighbors=500, | |
min_dist=0.1, | |
sampling_method="QuickFPS", | |
ncut_metric="cosine", | |
indirect_connection=True, | |
make_orthogonal=False, | |
old_school_ncut=False, | |
recursion=False, | |
recursion_l2_n_eigs=50, | |
recursion_l3_n_eigs=20, | |
recursion_metric="euclidean", | |
recursion_l1_gamma=0.5, | |
recursion_l2_gamma=0.5, | |
recursion_l3_gamma=0.5, | |
video_output=False, | |
is_lisa=False, | |
lisa_prompt1="", | |
lisa_prompt2="", | |
lisa_prompt3="", | |
plot_clusters=False, | |
alignedcut_eig_norm_plot=False, | |
**kwargs, | |
): | |
advanced = kwargs.get("advanced", False) | |
directed = kwargs.get("directed", False) | |
progress = gr.Progress() | |
progress(0.2, desc="Feature Extraction") | |
logging_str = "" | |
if "AlignedThreeModelAttnNodes" == model_name: | |
# dirty patch for the alignedcut paper | |
resolution = (224, 224) | |
else: | |
resolution = RES_DICT[model_name] | |
logging_str += f"Resolution: {resolution}\n" | |
if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne: | |
# raise gr.Error("Perplexity must be less than the number of samples for t-SNE.") | |
gr.Warning("Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.") | |
logging_str += f"Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.\n" | |
perplexity = num_sample_tsne - 1 | |
n_neighbors = num_sample_tsne - 1 | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
node_type = node_type.split(":")[0].strip() | |
start = time.time() | |
if "AlignedThreeModelAttnNodes" == model_name: | |
# dirty patch for the alignedcut paper | |
features = run_alignedthreemodelattnnodes(images, model, batch_size=BATCH_SIZE) | |
elif is_lisa == True: | |
# dirty patch for the LISA model | |
features = [] | |
with torch.no_grad(): | |
model = model.cuda() | |
images = images.cuda() | |
lisa_prompts = [lisa_prompt1, lisa_prompt2, lisa_prompt3] | |
for prompt in lisa_prompts: | |
import bleach | |
prompt = bleach.clean(prompt) | |
prompt = prompt.strip() | |
# print(prompt) | |
# # copy the sting to a new string | |
# copy_s = copy.copy(prompt) | |
feature = model(images, input_str=prompt)[node_type][0] | |
feature = F.normalize(feature, dim=-1) | |
features.append(feature.cpu().float()) | |
features = torch.stack(features) | |
else: | |
features = extract_features( | |
images, model, node_type=node_type, layer=layer-1, batch_size=BATCH_SIZE | |
) | |
if directed: | |
node_type2 = kwargs.get("node_type2", None) | |
features_B = extract_features( | |
images, model, node_type=node_type2, layer=layer-1, batch_size=BATCH_SIZE | |
) | |
# print(f"Feature extraction time (gpu): {time.time() - start:.2f}s") | |
logging_str += f"Backbone time: {time.time() - start:.2f}s\n" | |
del model | |
progress(0.4, desc="NCut") | |
if recursion: | |
rgbs = [] | |
all_eigvecs = [] | |
recursion_gammas = [recursion_l1_gamma, recursion_l2_gamma, recursion_l3_gamma] | |
inp = features | |
progress_start = 0.4 | |
for i, n_eigs in enumerate([num_eig, recursion_l2_n_eigs, recursion_l3_n_eigs]): | |
logging_str += f"Recursion #{i+1}\n" | |
progress_start += + 0.1 * i | |
rgb, _logging_str, eigvecs = compute_ncut( | |
inp, | |
num_eig=n_eigs, | |
num_sample_ncut=num_sample_ncut, | |
affinity_focal_gamma=recursion_gammas[i], | |
knn_ncut=knn_ncut, | |
knn_tsne=knn_tsne, | |
num_sample_tsne=num_sample_tsne, | |
embedding_method=embedding_method, | |
embedding_metric=embedding_metric, | |
perplexity=perplexity, | |
n_neighbors=n_neighbors, | |
min_dist=min_dist, | |
sampling_method=sampling_method, | |
metric=ncut_metric if i == 0 else recursion_metric, | |
indirect_connection=indirect_connection, | |
make_orthogonal=make_orthogonal, | |
progess_start=progress_start, | |
) | |
logging_str += _logging_str | |
all_eigvecs.append(eigvecs.cpu().clone()) | |
if "AlignedThreeModelAttnNodes" == model_name: | |
# dirty patch for the alignedcut paper | |
start = time.time() | |
progress(progress_start + 0.09, desc=f"Plotting Recursion {i+1}") | |
pil_images = [] | |
for i_image in range(rgb.shape[0]): | |
_im = plot_one_image_36_grid(images[i_image], rgb[i_image]) | |
pil_images.append(_im) | |
rgbs.append(pil_images) | |
logging_str += f"plot time: {time.time() - start:.2f}s\n" | |
else: | |
rgb = dont_use_too_much_green(rgb) | |
rgbs.append(to_pil_images(rgb)) | |
inp = eigvecs.reshape(*features.shape[:-1], -1) | |
if recursion_metric == "cosine": | |
inp = F.normalize(inp, dim=-1) | |
if not advanced: | |
return rgbs[0], rgbs[1], rgbs[2], logging_str | |
if "AlignedThreeModelAttnNodes" == model_name: | |
return rgbs[0], rgbs[1], rgbs[2], logging_str | |
if advanced: | |
cluster_plots, norm_plots = [], [] | |
for i in range(3): | |
eigvecs = all_eigvecs[i] | |
# add norm plot, cluster plot | |
start = time.time() | |
progress_start = 0.6 | |
progress(progress_start, desc=f"Plotting Clusters Recursion #{i+1}") | |
h, w = features.shape[1], features.shape[2] | |
if torch.cuda.is_available(): | |
images = images.cuda() | |
_images = reverse_transform_image(images, stablediffusion="stable" in model_name.lower()) | |
cluster_images, eig_magnitude = make_cluster_plot_advanced(eigvecs, _images, h=h, w=w) | |
logging_str += f"Recursion #{i+1} plot time: {time.time() - start:.2f}s\n" | |
norm_images = [] | |
vmin, vmax = eig_magnitude.min(), eig_magnitude.max() | |
eig_magnitude = (eig_magnitude - vmin) / (vmax - vmin) | |
eig_magnitude = eig_magnitude.cpu().numpy() | |
colormap = matplotlib.colormaps['Reds'] | |
for i_image in range(eig_magnitude.shape[0]): | |
norm_image = colormap(eig_magnitude[i_image]) | |
norm_images.append(torch.tensor(norm_image[..., :3])) | |
norm_images = to_pil_images(norm_images) | |
logging_str += f"Recursion #{i+1} Eigenvector Magnitude: [{vmin:.2f}, {vmax:.2f}]\n" | |
gr.Info(f"Recursion #{i+1} Eigenvector Magnitude:</br> Min: {vmin:.2f}, Max: {vmax:.2f}", duration=10) | |
cluster_plots.append(cluster_images) | |
norm_plots.append(norm_images) | |
return *rgbs, *norm_plots, *cluster_plots, logging_str | |
if old_school_ncut: # individual images | |
logging_str += "Running NCut for each image independently\n" | |
rgb = [] | |
progress_start = 0.4 | |
step_float = 0.6 / features.shape[0] | |
for i_image in range(features.shape[0]): | |
logging_str += f"Image #{i_image+1}\n" | |
feature = features[i_image] | |
_rgb, _logging_str, _ = compute_ncut( | |
feature[None], | |
num_eig=num_eig, | |
num_sample_ncut=30000, | |
affinity_focal_gamma=affinity_focal_gamma, | |
knn_ncut=1, | |
knn_tsne=10, | |
num_sample_tsne=300, | |
embedding_method=embedding_method, | |
embedding_metric=embedding_metric, | |
perplexity=perplexity, | |
n_neighbors=n_neighbors, | |
min_dist=min_dist, | |
sampling_method=sampling_method, | |
metric=ncut_metric, | |
indirect_connection=indirect_connection, | |
make_orthogonal=make_orthogonal, | |
progess_start=progress_start+step_float*i_image, | |
) | |
logging_str += _logging_str | |
rgb.append(_rgb[0]) | |
return to_pil_images(rgb), logging_str | |
# ailgnedcut | |
if not directed: | |
rgb, _logging_str, eigvecs = compute_ncut( | |
features, | |
num_eig=num_eig, | |
num_sample_ncut=num_sample_ncut, | |
affinity_focal_gamma=affinity_focal_gamma, | |
knn_ncut=knn_ncut, | |
knn_tsne=knn_tsne, | |
num_sample_tsne=num_sample_tsne, | |
embedding_method=embedding_method, | |
embedding_metric=embedding_metric, | |
perplexity=perplexity, | |
n_neighbors=n_neighbors, | |
min_dist=min_dist, | |
sampling_method=sampling_method, | |
indirect_connection=indirect_connection, | |
make_orthogonal=make_orthogonal, | |
metric=ncut_metric, | |
) | |
if directed: | |
head_index_text = kwargs.get("head_index_text", None) | |
n_heads = features.shape[-2] # (batch, h, w, n_heads, d) | |
if head_index_text == 'all': | |
head_idx = torch.arange(n_heads) | |
else: | |
_idxs = head_index_text.split(",") | |
head_idx = torch.tensor([int(idx) for idx in _idxs]) | |
features_A = features[:, :, :, head_idx, :] | |
features_B = features_B[:, :, :, head_idx, :] | |
rgb, _logging_str, eigvecs = compute_ncut_directed( | |
features_A, | |
features_B, | |
num_eig=num_eig, | |
num_sample_ncut=num_sample_ncut, | |
affinity_focal_gamma=affinity_focal_gamma, | |
knn_ncut=knn_ncut, | |
knn_tsne=knn_tsne, | |
num_sample_tsne=num_sample_tsne, | |
embedding_method=embedding_method, | |
embedding_metric=embedding_metric, | |
perplexity=perplexity, | |
n_neighbors=n_neighbors, | |
min_dist=min_dist, | |
sampling_method=sampling_method, | |
indirect_connection=False, | |
make_orthogonal=make_orthogonal, | |
metric=ncut_metric, | |
make_symmetric=kwargs.get("make_symmetric", None), | |
) | |
logging_str += _logging_str | |
if "AlignedThreeModelAttnNodes" == model_name: | |
# dirty patch for the alignedcut paper | |
start = time.time() | |
progress(0.6, desc="Plotting") | |
pil_images = [] | |
for i_image in range(rgb.shape[0]): | |
_im = plot_one_image_36_grid(images[i_image], rgb[i_image]) | |
pil_images.append(_im) | |
logging_str += f"plot time: {time.time() - start:.2f}s\n" | |
return pil_images, logging_str | |
if is_lisa == True: | |
# dirty patch for the LISA model | |
galleries = [] | |
for i_prompt in range(len(lisa_prompts)): | |
_rgb = rgb[i_prompt] | |
galleries.append(to_pil_images(_rgb)) | |
return *galleries, logging_str | |
rgb = dont_use_too_much_green(rgb) | |
if video_output: | |
progress(0.8, desc="Saving Video") | |
video_path = get_random_path() | |
video_cache.add_video(video_path) | |
pil_images_to_video(to_pil_images(rgb), video_path, fps=5) | |
return video_path, logging_str | |
cluster_images = None | |
if plot_clusters and kwargs.get("n_ret", 1) > 1: | |
start = time.time() | |
progress_start = 0.6 | |
progress(progress_start, desc="Plotting Clusters") | |
h, w = features.shape[1], features.shape[2] | |
if torch.cuda.is_available(): | |
images = images.cuda() | |
_images = reverse_transform_image(images, stablediffusion="stable" in model_name.lower()) | |
advanced = kwargs.get("advanced", False) | |
if advanced: | |
cluster_images, eig_magnitude = make_cluster_plot_advanced(eigvecs, _images, h=h, w=w) | |
else: | |
cluster_images, eig_magnitude = make_cluster_plot(eigvecs, _images, h=h, w=w, progess_start=progress_start, advanced=False) | |
logging_str += f"plot time: {time.time() - start:.2f}s\n" | |
norm_images = None | |
if alignedcut_eig_norm_plot and kwargs.get("n_ret", 1) > 1: | |
norm_images = [] | |
# eig_magnitude = torch.clamp(eig_magnitude, 0, 1) | |
vmin, vmax = eig_magnitude.min(), eig_magnitude.max() | |
eig_magnitude = (eig_magnitude - vmin) / (vmax - vmin) | |
eig_magnitude = eig_magnitude.cpu().numpy() | |
colormap = matplotlib.colormaps['Reds'] | |
for i_image in range(eig_magnitude.shape[0]): | |
norm_image = colormap(eig_magnitude[i_image]) | |
# norm_image = (norm_image[..., :3] * 255).astype(np.uint8) | |
# norm_images.append(Image.fromarray(norm_image)) | |
norm_images.append(torch.tensor(norm_image[..., :3])) | |
norm_images = to_pil_images(norm_images) | |
logging_str += "Eigenvector Magnitude\n" | |
logging_str += f"Min: {vmin:.2f}, Max: {vmax:.2f}\n" | |
gr.Info(f"Eigenvector Magnitude:</br> Min: {vmin:.2f}, Max: {vmax:.2f}", duration=10) | |
return to_pil_images(rgb), cluster_images, norm_images, logging_str | |
def _ncut_run(*args, **kwargs): | |
n_ret = kwargs.get("n_ret", 1) | |
try: | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
ret = ncut_run(*args, **kwargs) | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
ret = list(ret)[:n_ret] + [ret[-1]] | |
return ret | |
except Exception as e: | |
gr.Error(str(e)) | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
return *(None for _ in range(n_ret)), "Error: " + str(e) | |
# ret = ncut_run(*args, **kwargs) | |
# ret = list(ret)[:n_ret] + [ret[-1]] | |
# return ret | |
if USE_HUGGINGFACE_ZEROGPU: | |
def quick_run(*args, **kwargs): | |
return _ncut_run(*args, **kwargs) | |
def long_run(*args, **kwargs): | |
return _ncut_run(*args, **kwargs) | |
def longer_run(*args, **kwargs): | |
return _ncut_run(*args, **kwargs) | |
def super_duper_long_run(*args, **kwargs): | |
return _ncut_run(*args, **kwargs) | |
def cpu_run(*args, **kwargs): | |
return _ncut_run(*args, **kwargs) | |
if not USE_HUGGINGFACE_ZEROGPU: | |
def quick_run(*args, **kwargs): | |
return _ncut_run(*args, **kwargs) | |
def long_run(*args, **kwargs): | |
return _ncut_run(*args, **kwargs) | |
def longer_run(*args, **kwargs): | |
return _ncut_run(*args, **kwargs) | |
def super_duper_long_run(*args, **kwargs): | |
return _ncut_run(*args, **kwargs) | |
def cpu_run(*args, **kwargs): | |
return _ncut_run(*args, **kwargs) | |
def extract_video_frames(video_path, max_frames=100): | |
from decord import VideoReader | |
vr = VideoReader(video_path) | |
num_frames = len(vr) | |
if num_frames > max_frames: | |
gr.Warning(f"Video has {num_frames} frames. Only using {max_frames} frames. Evenly spaced.") | |
frame_idx = np.linspace(0, num_frames - 1, max_frames, dtype=int).tolist() | |
else: | |
frame_idx = list(range(num_frames)) | |
frames = vr.get_batch(frame_idx).asnumpy() | |
# return as list of PIL images | |
return [(Image.fromarray(frames[i]), "") for i in range(frames.shape[0])] | |
def transform_image(image, resolution=(1024, 1024), stablediffusion=False): | |
image = image.convert('RGB').resize(resolution, Image.LANCZOS) | |
# Convert to torch tensor | |
image = torch.tensor(np.array(image).transpose(2, 0, 1)).float() | |
image = image / 255 | |
# Normalize | |
if not stablediffusion: | |
mean = [0.485, 0.456, 0.406] | |
std = [0.229, 0.224, 0.225] | |
image = (image - torch.tensor(mean).view(3, 1, 1)) / torch.tensor(std).view(3, 1, 1) | |
if stablediffusion: | |
image = image * 2 - 1 | |
return image | |
def reverse_transform_image(image, stablediffusion=False): | |
if stablediffusion: | |
image = (image + 1) / 2 | |
else: | |
mean = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1).to(image.device) | |
std = torch.tensor([0.229, 0.224, 0.225]).view(3, 1, 1).to(image.device) | |
image = image * std + mean | |
image = torch.clamp(image, 0, 1) | |
return image | |
def plot_one_image_36_grid(original_image, tsne_rgb_images): | |
mean = [0.485, 0.456, 0.406] | |
std = [0.229, 0.224, 0.225] | |
original_image = original_image * torch.tensor(std).view(3, 1, 1) + torch.tensor(mean).view(3, 1, 1) | |
original_image = torch.clamp(original_image, 0, 1) | |
fig = plt.figure(figsize=(20, 4)) | |
grid = plt.GridSpec(3, 14, hspace=0.1, wspace=0.1) | |
ax1 = fig.add_subplot(grid[0:2, 0:2]) | |
img = original_image.cpu().float().numpy().transpose(1, 2, 0) | |
def convert_and_pad_image(np_array, pad_size=20): | |
""" | |
Converts a NumPy array of shape (height, width, 3) to a PNG image | |
and pads the right and bottom sides with a transparent background. | |
Args: | |
np_array (numpy.ndarray): Input NumPy array of shape (height, width, 3) | |
pad_size (int, optional): Number of pixels to pad on the right and bottom sides. Default is 20. | |
Returns: | |
PIL.Image: Padded PNG image with transparent background | |
""" | |
# Convert NumPy array to PIL Image | |
img = Image.fromarray(np_array) | |
# Get the original size | |
width, height = img.size | |
# Create a new image with padding and transparent background | |
new_width = width + pad_size | |
new_height = height + pad_size | |
padded_img = Image.new('RGBA', (new_width, new_height), color=(255, 255, 255, 0)) | |
# Paste the original image onto the padded image | |
padded_img.paste(img, (0, 0)) | |
return padded_img | |
img = convert_and_pad_image((img*255).astype(np.uint8)) | |
ax1.imshow(img) | |
ax1.axis('off') | |
model_names = ['CLIP', 'DINO', 'MAE'] | |
for i_model, model_name in enumerate(model_names): | |
for i_layer in range(12): | |
ax = fig.add_subplot(grid[i_model, i_layer+2]) | |
ax.imshow(tsne_rgb_images[i_layer+12*i_model].cpu().float().numpy()) | |
ax.axis('off') | |
if i_model == 0: | |
ax.set_title(f'Layer{i_layer}', fontsize=16) | |
if i_layer == 0: | |
ax.text(-0.1, 0.5, model_name, va="center", ha="center", fontsize=16, transform=ax.transAxes, rotation=90,) | |
plt.tight_layout() | |
filename = uuid.uuid4() | |
filename = f"/tmp/{filename}.png" | |
plt.savefig(filename, bbox_inches='tight', pad_inches=0, dpi=100) | |
img = Image.open(filename) | |
img = img.convert("RGB") | |
img = copy.deepcopy(img) | |
os.remove(filename) | |
plt.close() | |
return img | |
def load_alignedthreemodel(): | |
import sys | |
if "alignedthreeattn" not in sys.path: | |
for _ in range(3): | |
os.system("git clone https://huggingface.co/huzey/alignedthreeattn >> /dev/null 2>&1") | |
os.system("git -C alignedthreeattn pull >> /dev/null 2>&1") | |
# add to path | |
sys.path.append("alignedthreeattn") | |
from alignedthreeattn.alignedthreeattn_model import ThreeAttnNodes | |
align_weights = torch.load("alignedthreeattn/align_weights.pth") | |
model = ThreeAttnNodes(align_weights) | |
return model | |
try: | |
# pre-load the alignedthree model in case it fails to load | |
load_alignedthreemodel() | |
except Exception as e: | |
pass | |
promptable_diffusion_models = ["Diffusion(stabilityai/stable-diffusion-2)", "Diffusion(CompVis/stable-diffusion-v1-4)"] | |
promptable_segmentation_models = ["LISA(xinlai/LISA-7B-v1)"] | |
def run_fn( | |
images, | |
model_name="DiNO(dino_vitb8_448)", | |
layer=10, | |
num_eig=100, | |
node_type="block", | |
positive_prompt="", | |
negative_prompt="", | |
is_lisa=False, | |
lisa_prompt1="", | |
lisa_prompt2="", | |
lisa_prompt3="", | |
affinity_focal_gamma=0.5, | |
num_sample_ncut=10000, | |
knn_ncut=10, | |
ncut_indirect_connection=True, | |
ncut_make_orthogonal=False, | |
embedding_method="tsne_3d", | |
embedding_metric='euclidean', | |
num_sample_tsne=300, | |
knn_tsne=10, | |
perplexity=150, | |
n_neighbors=150, | |
min_dist=0.1, | |
sampling_method="QuickFPS", | |
ncut_metric="cosine", | |
old_school_ncut=False, | |
max_frames=100, | |
recursion=False, | |
recursion_l2_n_eigs=50, | |
recursion_l3_n_eigs=20, | |
recursion_metric="euclidean", | |
recursion_l1_gamma=0.5, | |
recursion_l2_gamma=0.5, | |
recursion_l3_gamma=0.5, | |
node_type2="k", | |
head_index_text='all', | |
make_symmetric=False, | |
n_ret=1, | |
plot_clusters=False, | |
alignedcut_eig_norm_plot=False, | |
advanced=False, | |
directed=False, | |
): | |
# print(node_type2, head_index_text, make_symmetric) | |
progress=gr.Progress() | |
progress(0, desc="Starting") | |
if images is None: | |
gr.Warning("No images selected.") | |
return *(None for _ in range(n_ret)), "No images selected." | |
progress(0.05, desc="Processing Images") | |
video_output = False | |
if isinstance(images, str): | |
images = extract_video_frames(images, max_frames=max_frames) | |
video_output = True | |
if sampling_method == "QuickFPS": | |
sampling_method = "farthest" | |
# resize the images before acquiring GPU | |
if "AlignedThreeModelAttnNodes" == model_name: | |
# dirty patch for the alignedcut paper | |
resolution = (224, 224) | |
else: | |
resolution = RES_DICT[model_name] | |
images = [tup[0] for tup in images] | |
stablediffusion = True if "Diffusion" in model_name else False | |
images = [transform_image(image, resolution=resolution, stablediffusion=stablediffusion) for image in images] | |
images = torch.stack(images) | |
progress(0.1, desc="Downloading Model") | |
if is_lisa: | |
import subprocess | |
import sys | |
import importlib | |
gr.Warning("LISA model is not compatible with the current version of transformers. Please contact the LISA and Llava author for update.") | |
gr.Warning("This is a dirty patch for the LISA model. switch to the old version of transformers.") | |
gr.Warning("Not garanteed to work.") | |
# LISA and Llava is not compatible with the current version of transformers | |
# please contact the author for update | |
# this is a dirty patch for the LISA model | |
# pre-import the SD3 pipeline | |
from diffusers import StableDiffusion3Pipeline | |
# unloading the current transformers | |
for module in list(sys.modules.keys()): | |
if "transformers" in module: | |
del sys.modules[module] | |
def install_transformers_version(version, target_dir): | |
"""Install a specific version of transformers to a target directory.""" | |
if not os.path.exists(target_dir): | |
os.makedirs(target_dir) | |
# Use subprocess to run the pip command | |
# subprocess.check_call([sys.executable, '-m', 'pip', 'install', f'transformers=={version}', '-t', target_dir]) | |
os.system(f"{sys.executable} -m pip install transformers=={version} -t {target_dir} >> /dev/null 2>&1") | |
target_dir = '/tmp/lisa_transformers_v433' | |
if not os.path.exists(target_dir): | |
install_transformers_version('4.33.0', target_dir) | |
# Add the new version path to sys.path | |
sys.path.insert(0, target_dir) | |
transformers = importlib.import_module("transformers") | |
if not is_lisa: | |
import subprocess | |
import sys | |
import importlib | |
# remove the LISA model from the sys.path | |
if "/tmp/lisa_transformers_v433" in sys.path: | |
sys.path.remove("/tmp/lisa_transformers_v433") | |
transformers = importlib.import_module("transformers") | |
if "AlignedThreeModelAttnNodes" == model_name: | |
# dirty patch for the alignedcut paper | |
model = load_alignedthreemodel() | |
else: | |
model = load_model(model_name) | |
if "stable" in model_name.lower() and "diffusion" in model_name.lower(): | |
model.timestep = layer | |
layer = 1 | |
if model_name in promptable_diffusion_models: | |
model.positive_prompt = positive_prompt | |
model.negative_prompt = negative_prompt | |
kwargs = { | |
"model_name": model_name, | |
"layer": layer, | |
"num_eig": num_eig, | |
"node_type": node_type, | |
"affinity_focal_gamma": affinity_focal_gamma, | |
"num_sample_ncut": num_sample_ncut, | |
"knn_ncut": knn_ncut, | |
"embedding_method": embedding_method, | |
"embedding_metric": embedding_metric, | |
"num_sample_tsne": num_sample_tsne, | |
"knn_tsne": knn_tsne, | |
"perplexity": perplexity, | |
"n_neighbors": n_neighbors, | |
"min_dist": min_dist, | |
"sampling_method": sampling_method, | |
"ncut_metric": ncut_metric, | |
"indirect_connection": ncut_indirect_connection, | |
"make_orthogonal": ncut_make_orthogonal, | |
"old_school_ncut": old_school_ncut, | |
"recursion": recursion, | |
"recursion_l2_n_eigs": recursion_l2_n_eigs, | |
"recursion_l3_n_eigs": recursion_l3_n_eigs, | |
"recursion_metric": recursion_metric, | |
"recursion_l1_gamma": recursion_l1_gamma, | |
"recursion_l2_gamma": recursion_l2_gamma, | |
"recursion_l3_gamma": recursion_l3_gamma, | |
"video_output": video_output, | |
"lisa_prompt1": lisa_prompt1, | |
"lisa_prompt2": lisa_prompt2, | |
"lisa_prompt3": lisa_prompt3, | |
"is_lisa": is_lisa, | |
"n_ret": n_ret, | |
"plot_clusters": plot_clusters, | |
"alignedcut_eig_norm_plot": alignedcut_eig_norm_plot, | |
"advanced": advanced, | |
"directed": directed, | |
"node_type2": node_type2, | |
"head_index_text": head_index_text, | |
"make_symmetric": make_symmetric, | |
} | |
# print(kwargs) | |
try: | |
# try to aquiare GPU, can fail if the user is out of GPU quota | |
if old_school_ncut: | |
return super_duper_long_run(model, images, **kwargs) | |
if is_lisa: | |
return super_duper_long_run(model, images, **kwargs) | |
num_images = len(images) | |
if num_images >= 100: | |
return super_duper_long_run(model, images, **kwargs) | |
if 'diffusion' in model_name.lower(): | |
return super_duper_long_run(model, images, **kwargs) | |
if recursion: | |
return longer_run(model, images, **kwargs) | |
if num_images >= 50: | |
return longer_run(model, images, **kwargs) | |
if old_school_ncut: | |
return longer_run(model, images, **kwargs) | |
if num_images >= 10: | |
return long_run(model, images, **kwargs) | |
if embedding_method == "UMAP": | |
if perplexity >= 250 or num_sample_tsne >= 500: | |
return longer_run(model, images, **kwargs) | |
return long_run(model, images, **kwargs) | |
if embedding_method == "t-SNE": | |
if perplexity >= 250 or num_sample_tsne >= 500: | |
return long_run(model, images, **kwargs) | |
return quick_run(model, images, **kwargs) | |
return quick_run(model, images, **kwargs) | |
except gr.Error as e: | |
# I assume this is a GPU quota error | |
info1 = 'Running out of HuggingFace GPU Quota?</br> Please try <a style="white-space: nowrap;text-underline-offset: 2px;color: var(--body-text-color)" href="https://ncut-pytorch.readthedocs.io/en/latest/demo/">Demo hosted at UPenn</a></br>' | |
info2 = 'Or try use the Python package that powers this app: <a style="white-space: nowrap;text-underline-offset: 2px;color: var(--body-text-color)" href="https://ncut-pytorch.readthedocs.io/en/latest/">ncut-pytorch</a>' | |
info = info1 + info2 | |
message = "<b>HuggingFace: </b></br>" + e.message + "</br></br>---------</br>" + "<b>`ncut-pytorch` Developer: </b></br>" + info | |
raise gr.Error(message, duration=0) | |
import torch | |
from torch import nn | |
from torch.utils.data import Dataset, DataLoader | |
import pytorch_lightning as pl | |
# Custom Dataset | |
class TwoTensorDataset(Dataset): | |
def __init__(self, A, B): | |
self.A = A | |
self.B = B | |
def __len__(self): | |
return len(self.A) | |
def __getitem__(self, idx): | |
return self.A[idx], self.B[idx] | |
# MLP model | |
class MLP(pl.LightningModule): | |
def __init__(self, num_layer=3, width=512, lr=3e-4, fitting_steps=10000, seg_loss_lambda=1.0): | |
super().__init__() | |
layers = [nn.Linear(3, width), nn.GELU()] | |
for _ in range(num_layer - 1): | |
layers.append(nn.Linear(width, width)) | |
layers.append(nn.GELU()) | |
layers.append(nn.Linear(width, 3)) | |
self.layers = nn.Sequential(*layers) | |
self.mse_loss = nn.MSELoss() | |
self.lr = lr | |
self.fitting_steps = fitting_steps | |
self.seg_loss_lambda = seg_loss_lambda | |
self.progress = gr.Progress() | |
def forward(self, x): | |
return self.layers(x) | |
def training_step(self, batch, batch_idx): | |
x, y = batch | |
y_hat = self.forward(x) | |
loss = self.mse_loss(y_hat, y) | |
# loss = torch.nn.functional.mse_loss(torch.log(y_hat), torch.log(y)) | |
self.log("train_loss", loss) | |
# add segmentation constraint | |
bsz = x.shape[0] | |
sample_size = 1000 | |
if bsz > sample_size: | |
idx = torch.randperm(bsz)[:sample_size] | |
x = x[idx] | |
y_hat = y_hat[idx] | |
old_dist = torch.pdist(x, p=2) | |
new_dist = torch.pdist(y_hat, p=2) | |
# seg_loss = torch.log((old_dist - new_dist)).pow(2).mean() | |
seg_loss = self.mse_loss(old_dist, new_dist) | |
self.log("seg_loss", seg_loss) | |
loss += seg_loss * self.seg_loss_lambda | |
step = self.global_step | |
if step % 100 == 0: | |
self.progress(step / self.fitting_steps, desc="Fitting MLP") | |
return loss | |
def predict_step(self, batch, batch_idx, dataloader_idx=None): | |
x = batch[0] | |
y_hat = self.forward(x) | |
return y_hat | |
def configure_optimizers(self): | |
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr) | |
return optimizer | |
def fit_trans(rgb1, rgb2, num_layer=3, width=512, batch_size=256, lr=3e-4, fitting_steps=10000, fps_sample=4096, seg_loss_lambda=1.0): | |
A = rgb1.clone() | |
B = rgb2.clone() | |
# FPS sample on the data | |
from ncut_pytorch.ncut_pytorch import farthest_point_sampling | |
A_idx = farthest_point_sampling(A, fps_sample) | |
B_idx = farthest_point_sampling(B, fps_sample) | |
A_B_idx = np.concatenate([A_idx, B_idx]) | |
A = A[A_B_idx] | |
B = B[A_B_idx] | |
from torch.utils.data import DataLoader, TensorDataset | |
# Dataset and DataLoader | |
dataset = TwoTensorDataset(A, B) | |
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) | |
# Initialize model and trainer | |
mlp = MLP(num_layer=num_layer, width=width, lr=lr, fitting_steps=fitting_steps, seg_loss_lambda=seg_loss_lambda) | |
trainer = pl.Trainer( | |
max_epochs=100000, | |
gpus=1, | |
max_steps=fitting_steps, | |
enable_checkpointing=False, | |
enable_progress_bar=False, | |
gradient_clip_val=1.0 | |
) | |
# Create a DataLoader for tensor A | |
batch_size = 256 # Define your batch size | |
data_loader = DataLoader(TensorDataset(rgb1), batch_size=batch_size, shuffle=False) | |
# Train the model | |
trainer.fit(mlp, dataloader) | |
mlp.progress(0.99, desc="Applying MLP") | |
results = trainer.predict(mlp, data_loader) | |
A_transformed = torch.cat(results, dim=0) | |
return A_transformed | |
if USE_HUGGINGFACE_ZEROGPU: | |
def _run_mlp_fit(*args, **kwargs): | |
return fit_trans(*args, **kwargs) | |
else: | |
def _run_mlp_fit(*args, **kwargs): | |
return fit_trans(*args, **kwargs) | |
def run_mlp_fit(input_gallery, target_gallery, num_layer=3, width=512, batch_size=256, lr=3e-4, fitting_steps=10000, fps_sample=4096, seg_loss_lambda=1.0): | |
# print("Fitting MLP") | |
# print("Target Gallery Length:", len(target_gallery)) | |
# print("Input Gallery Length:", len(input_gallery)) | |
if target_gallery is None or len(target_gallery) == 0: | |
raise gr.Error("No target images selected. Please use the Mark button to select the target images.") | |
if input_gallery is None or len(input_gallery) == 0: | |
raise gr.Error("No input images selected.") | |
def gallery_to_rgb(gallery): | |
images = [tup[0] for tup in gallery] | |
rgb = [] | |
for image in images: | |
if isinstance(image, str): | |
image = Image.open(image) | |
image = image.convert('RGB') | |
image = torch.tensor(np.array(image)).float() | |
image = image / 255 | |
rgb.append(image) | |
rgb = torch.stack(rgb) | |
shape = rgb.shape | |
rgb = rgb.reshape(-1, 3) | |
return rgb, shape | |
target_rgb, target_shape = gallery_to_rgb(target_gallery) | |
input_rgb, input_shape = gallery_to_rgb(input_gallery) | |
input_transformed = _run_mlp_fit(input_rgb, target_rgb, num_layer=num_layer, width=width, batch_size=batch_size, lr=lr, | |
fitting_steps=fitting_steps, fps_sample=fps_sample, seg_loss_lambda=seg_loss_lambda) | |
input_transformed = input_transformed.reshape(*input_shape) | |
pil_images = to_pil_images(input_transformed, resize=False) | |
return pil_images | |
def make_input_video_section(): | |
# gr.Markdown('### Input Video') | |
input_gallery = gr.Video(value=None, label="Select video", elem_id="video-input", height="auto", show_share_button=False, interactive=True) | |
gr.Markdown('_image backbone model is used to extract features from each frame, NCUT is computed on all frames_') | |
max_frames_number = gr.Number(100, label="Max frames", elem_id="max_frames") | |
# max_frames_number = gr.Slider(1, 200, step=1, label="Max frames", value=100, elem_id="max_frames") | |
submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary') | |
clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button', variant='stop') | |
return input_gallery, submit_button, clear_images_button, max_frames_number | |
def load_dataset_images(is_advanced, dataset_name, num_images=10, | |
is_filter=False, filter_by_class_text="0,1,2", | |
is_random=False, seed=1): | |
progress = gr.Progress() | |
progress(0, desc="Loading Images") | |
if dataset_name == "EgoExo": | |
is_advanced = "Basic" | |
if is_advanced == "Basic": | |
gr.Info(f"Loaded images from EgoExo") | |
return default_images | |
try: | |
progress(0.5, desc="Downloading Dataset") | |
if 'EgoThink' in dataset_name: | |
dataset = load_dataset(dataset_name, 'Activity', trust_remote_code=True) | |
else: | |
dataset = load_dataset(dataset_name, trust_remote_code=True) | |
key = list(dataset.keys())[0] | |
dataset = dataset[key] | |
except Exception as e: | |
raise gr.Error(f"Error loading dataset {dataset_name}: {e}") | |
if num_images > len(dataset): | |
num_images = len(dataset) | |
if len(filter_by_class_text) == 0: | |
is_filter = False | |
if is_filter: | |
progress(0.8, desc="Filtering Images") | |
classes = [int(i) for i in filter_by_class_text.split(",")] | |
labels = np.array(dataset['label']) | |
unique_labels = np.unique(labels) | |
valid_classes = [i for i in classes if i in unique_labels] | |
invalid_classes = [i for i in classes if i not in unique_labels] | |
if len(invalid_classes) > 0: | |
gr.Warning(f"Classes {invalid_classes} not found in the dataset.") | |
if len(valid_classes) == 0: | |
raise gr.Error(f"Classes {classes} not found in the dataset.") | |
# shuffle each class | |
chunk_size = num_images // len(valid_classes) | |
image_idx = [] | |
for i in valid_classes: | |
idx = np.where(labels == i)[0] | |
if is_random: | |
idx = np.random.RandomState(seed).choice(idx, chunk_size, replace=False) | |
else: | |
idx = idx[:chunk_size] | |
image_idx.extend(idx.tolist()) | |
if not is_filter: | |
if is_random: | |
image_idx = np.random.RandomState(seed).choice(len(dataset), num_images, replace=False).tolist() | |
else: | |
image_idx = list(range(num_images)) | |
key = 'image' if 'image' in dataset[0] else list(dataset[0].keys())[0] | |
images = [dataset[i][key] for i in image_idx] | |
gr.Info(f"Loaded {len(images)} images from {dataset_name}") | |
del dataset | |
if dataset_name in CENTER_CROP_DATASETS: | |
def center_crop_image(img): | |
# image: PIL image | |
w, h = img.size | |
min_hw = min(h, w) | |
# center crop | |
left = (w - min_hw) // 2 | |
top = (h - min_hw) // 2 | |
right = left + min_hw | |
bottom = top + min_hw | |
img = img.crop((left, top, right, bottom)) | |
return img | |
images = [center_crop_image(image) for image in images] | |
return images | |
def load_and_append(existing_images, *args, **kwargs): | |
new_images = load_dataset_images(*args, **kwargs) | |
if new_images is None: | |
return existing_images | |
if len(new_images) == 0: | |
return existing_images | |
if existing_images is None: | |
existing_images = [] | |
existing_images += new_images | |
gr.Info(f"Total images: {len(existing_images)}") | |
return existing_images | |
def make_input_images_section(rows=1, cols=3, height="auto", advanced=False, is_random=False, allow_download=False, markdown=True): | |
if markdown: | |
gr.Markdown('### Input Images') | |
input_gallery = gr.Gallery(value=None, label="Input images", show_label=True, elem_id="input_images", columns=[cols], rows=[rows], object_fit="contain", height=height, type="pil", show_share_button=False, | |
format="webp") | |
submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary') | |
with gr.Row(): | |
clear_images_button = gr.Button("🗑️ Clear", elem_id='clear_button', variant='stop') | |
clear_images_button.click(fn=lambda: gr.update(value=None), outputs=[input_gallery]) | |
upload_button = gr.UploadButton(elem_id="upload_button", label="⬆️ Upload", variant='secondary', file_types=["image"], file_count="multiple") | |
def convert_to_pil_and_append(images, new_images): | |
if images is None: | |
images = [] | |
if new_images is None: | |
return images | |
if isinstance(new_images, Image.Image): | |
images.append(new_images) | |
if isinstance(new_images, list): | |
images += [Image.open(new_image) for new_image in new_images] | |
if isinstance(new_images, str): | |
images.append(Image.open(new_images)) | |
gr.Info(f"Total images: {len(images)}") | |
return images | |
upload_button.upload(convert_to_pil_and_append, inputs=[input_gallery, upload_button], outputs=[input_gallery]) | |
if allow_download: | |
create_file_button, download_button = add_download_button(input_gallery, "input_images") | |
gr.Markdown('### Load Datasets') | |
advanced_radio = gr.Radio(["Basic", "Advanced"], label="Datasets Menu", value="Advanced" if advanced else "Basic", elem_id="advanced-radio", show_label=True) | |
with gr.Column() as basic_block: | |
# gr.Markdown('### Example Image Sets') | |
def make_example(name, images, dataset_name): | |
with gr.Row(): | |
button = gr.Button("Load\n"+name, elem_id=f"example-{name}", elem_classes="small-button", variant='secondary', size="sm", scale=1, min_width=60) | |
gallery = gr.Gallery(value=images, label=name, show_label=True, columns=[3], rows=[1], interactive=False, height=80, scale=8, object_fit="cover", min_width=140, allow_preview=False) | |
button.click(fn=lambda: gr.update(value=load_dataset_images(True, dataset_name, 100, is_random=True, seed=42)), outputs=[input_gallery]) | |
return gallery, button | |
example_items = [ | |
("EgoExo", ['./images/egoexo1.jpg', './images/egoexo3.jpg', './images/egoexo2.jpg'], "EgoExo"), | |
("Ego", ['./images/egothink1.jpg', './images/egothink2.jpg', './images/egothink3.jpg'], "EgoThink/EgoThink"), | |
("Face", ['./images/face1.jpg', './images/face2.jpg', './images/face3.jpg'], "nielsr/CelebA-faces"), | |
("Pose", ['./images/pose1.jpg', './images/pose2.jpg', './images/pose3.jpg'], "sayakpaul/poses-controlnet-dataset"), | |
# ("CatDog", ['./images/catdog1.jpg', './images/catdog2.jpg', './images/catdog3.jpg'], "microsoft/cats_vs_dogs"), | |
# ("Bird", ['./images/bird1.jpg', './images/bird2.jpg', './images/bird3.jpg'], "Multimodal-Fatima/CUB_train"), | |
# ("ChestXray", ['./images/chestxray1.jpg', './images/chestxray2.jpg', './images/chestxray3.jpg'], "hongrui/mimic_chest_xray_v_1"), | |
("BrainMRI", ['./images/brain1.jpg', './images/brain2.jpg', './images/brain3.jpg'], "sartajbhuvaji/Brain-Tumor-Classification"), | |
("Kanji", ['./images/kanji1.jpg', './images/kanji2.jpg', './images/kanji3.jpg'], "yashvoladoddi37/kanjienglish"), | |
] | |
for name, images, dataset_name in example_items: | |
make_example(name, images, dataset_name) | |
with gr.Column() as advanced_block: | |
load_images_button = gr.Button("🔴 Load Images", elem_id="load-images-button", variant='primary') | |
# dataset_names = DATASET_NAMES | |
# dataset_classes = DATASET_CLASSES | |
dataset_categories = list(DATASETS.keys()) | |
defualt_cat = dataset_categories[0] | |
def get_choices(cat): | |
return [tup[0] for tup in DATASETS[cat]] | |
defualt_choices = get_choices(defualt_cat) | |
with gr.Row(): | |
dataset_radio = gr.Radio(dataset_categories, label="Dataset Category", value=defualt_cat, elem_id="dataset-radio", show_label=True, min_width=600) | |
# dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="mrm8488/ImageNet1K-val", elem_id="dataset", min_width=300) | |
dataset_dropdown = gr.Dropdown(defualt_choices, label="Dataset name", value=defualt_choices[0], elem_id="dataset", min_width=400) | |
dataset_radio.change(fn=lambda x: gr.update(choices=get_choices(x), value=get_choices(x)[0]), inputs=dataset_radio, outputs=dataset_dropdown) | |
# num_images_slider = gr.Number(10, label="Number of images", elem_id="num_images") | |
num_images_slider = gr.Slider(1, 1000, step=1, label="Number of images", value=10, elem_id="num_images", min_width=200) | |
if not is_random: | |
filter_by_class_checkbox = gr.Checkbox(label="Filter by class", value=True, elem_id="filter_by_class_checkbox") | |
filter_by_class_text = gr.Textbox(label="Class to select", value="0,33,99", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. (1000 classes)", visible=True) | |
# is_random_checkbox = gr.Checkbox(label="Random shuffle", value=False, elem_id="random_seed_checkbox") | |
# random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=False) | |
is_random_checkbox = gr.Checkbox(label="Random shuffle", value=True, elem_id="random_seed_checkbox") | |
random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=True) | |
if is_random: | |
filter_by_class_checkbox = gr.Checkbox(label="Filter by class", value=False, elem_id="filter_by_class_checkbox") | |
filter_by_class_text = gr.Textbox(label="Class to select", value="0,33,99", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. (1000 classes)", visible=False) | |
is_random_checkbox = gr.Checkbox(label="Random shuffle", value=True, elem_id="random_seed_checkbox") | |
random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=42, elem_id="random_seed", visible=True) | |
# add functionality, save and load images to profile | |
with gr.Accordion("Saved Image Profiles", open=False) as profile_accordion: | |
with gr.Row(): | |
profile_text = gr.Textbox(label="Profile name", placeholder="Type here: Profile name to save/load/delete", elem_id="profile-name", scale=6, show_label=False) | |
list_profiles_button = gr.Button("📋 List", elem_id="list-profile-button", variant='secondary', scale=3) | |
with gr.Row(): | |
save_profile_button = gr.Button("💾 Save", elem_id="save-profile-button", variant='secondary') | |
load_profile_button = gr.Button("📂 Load", elem_id="load-profile-button", variant='secondary') | |
delete_profile_button = gr.Button("🗑️ Delete", elem_id="delete-profile-button", variant='secondary') | |
class OnDiskProfiles: | |
def __init__(self, profile_dir="demo_profiles"): | |
if not os.path.exists(profile_dir): | |
os.makedirs(profile_dir) | |
self.profile_dir = profile_dir | |
def list_profiles(self): | |
profiles = os.listdir(self.profile_dir) | |
# remove hidden files | |
profiles = [p for p in profiles if not p.startswith(".")] | |
if len(profiles) == 0: | |
return "No profiles found." | |
profile_text = "</br>".join(profiles) | |
n_files = len(profiles) | |
profile_text = f"Number of profiles: {n_files}</br>---------</br>" + profile_text | |
return profile_text | |
def save_profile(self, profile_name, images): | |
profile_path = os.path.join(self.profile_dir, profile_name) | |
if os.path.exists(profile_path): | |
raise gr.Error(f"Profile {profile_name} already exists.") | |
with open(profile_path, "wb") as f: | |
pickle.dump(images, f) | |
gr.Info(f"Profile {profile_name} saved.") | |
return profile_path | |
def load_profile(self, profile_name, existing_images): | |
profile_path = os.path.join(self.profile_dir, profile_name) | |
if not os.path.exists(profile_path): | |
raise gr.Error(f"Profile {profile_name} not found.") | |
with open(profile_path, "rb") as f: | |
images = pickle.load(f) | |
gr.Info(f"Profile {profile_name} loaded.") | |
if existing_images is None: | |
existing_images = [] | |
return existing_images + images | |
def delete_profile(self, profile_name): | |
profile_path = os.path.join(self.profile_dir, profile_name) | |
os.remove(profile_path) | |
gr.Info(f"Profile {profile_name} deleted.") | |
return profile_path | |
home_dir = os.path.expanduser("~") | |
defualt_dir = os.path.join(home_dir, ".cache") | |
cache_dir = os.environ.get("DEMO_PROFILE_CACHE_DIR", defualt_dir) | |
cache_dir = os.path.join(cache_dir, "demo_profiles") | |
on_disk_profiles = OnDiskProfiles(cache_dir) | |
save_profile_button.click(fn=lambda name, images: on_disk_profiles.save_profile(name, images), inputs=[profile_text, input_gallery]) | |
load_profile_button.click(fn=lambda name, existing_images: gr.update(value=on_disk_profiles.load_profile(name, existing_images)), inputs=[profile_text, input_gallery], outputs=[input_gallery]) | |
delete_profile_button.click(fn=lambda name: on_disk_profiles.delete_profile(name), inputs=profile_text) | |
list_profiles_button.click(fn=lambda: gr.Info(on_disk_profiles.list_profiles(), duration=0)) | |
if advanced: | |
advanced_block.visible = True | |
basic_block.visible = False | |
else: | |
advanced_block.visible = False | |
basic_block.visible = True | |
# change visibility | |
advanced_radio.change(fn=lambda x: gr.update(visible=x=="Advanced"), inputs=advanced_radio, outputs=[advanced_block]) | |
advanced_radio.change(fn=lambda x: gr.update(visible=x=="Basic"), inputs=advanced_radio, outputs=[basic_block]) | |
def find_num_classes(dataset_name): | |
num_classes = None | |
for cat, datasets in DATASETS.items(): | |
datasets = [tup[0] for tup in datasets] | |
if dataset_name in datasets: | |
num_classes = DATASETS[cat][datasets.index(dataset_name)][1] | |
break | |
return num_classes | |
def change_filter_options(dataset_name): | |
num_classes = find_num_classes(dataset_name) | |
if num_classes is None: | |
return (gr.Checkbox(label="Filter by class", value=False, elem_id="filter_by_class_checkbox", visible=False), | |
gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info="e.g. `0,1,2`. This dataset has no class label", visible=False)) | |
return (gr.Checkbox(label="Filter by class", value=True, elem_id="filter_by_class_checkbox", visible=True), | |
gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. ({num_classes} classes)", visible=True)) | |
dataset_dropdown.change(fn=change_filter_options, inputs=dataset_dropdown, outputs=[filter_by_class_checkbox, filter_by_class_text]) | |
def change_filter_by_class(is_filter, dataset_name): | |
num_classes = find_num_classes(dataset_name) | |
return gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. ({num_classes} classes)", visible=is_filter) | |
filter_by_class_checkbox.change(fn=change_filter_by_class, inputs=[filter_by_class_checkbox, dataset_dropdown], outputs=filter_by_class_text) | |
def change_random_seed(is_random): | |
return gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=is_random) | |
is_random_checkbox.change(fn=change_random_seed, inputs=is_random_checkbox, outputs=random_seed_slider) | |
load_images_button.click(load_and_append, | |
inputs=[input_gallery, advanced_radio, dataset_dropdown, num_images_slider, | |
filter_by_class_checkbox, filter_by_class_text, | |
is_random_checkbox, random_seed_slider], | |
outputs=[input_gallery]) | |
return input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button | |
# def random_rotate_rgb_gallery(images): | |
# if images is None or len(images) == 0: | |
# gr.Warning("No images selected.") | |
# return [] | |
# # read webp images | |
# images = [Image.open(image[0]).convert("RGB") for image in images] | |
# images = [np.array(image).astype(np.float32) for image in images] | |
# images = np.stack(images) | |
# images = torch.tensor(images) / 255 | |
# position = np.random.choice([1, 2, 4, 5, 6]) | |
# images = rotate_rgb_cube(images, position) | |
# images = to_pil_images(images, resize=False) | |
# return images | |
def protect_original_image_in_plot(original_image, rotated_images): | |
plot_h, plot_w = 332, 1542 | |
image_h, image_w = original_image.shape[1], original_image.shape[2] | |
if not (plot_h == image_h and plot_w == image_w): | |
return rotated_images | |
protection_w = 190 | |
rotated_images[:, :, :protection_w] = original_image[:, :, :protection_w] | |
return rotated_images | |
def sequence_rotate_rgb_gallery(images): | |
if images is None or len(images) == 0: | |
gr.Warning("No images selected.") | |
return [] | |
# read webp images | |
images = [Image.open(image[0]).convert("RGB") for image in images] | |
images = [np.array(image).astype(np.float32) for image in images] | |
images = np.stack(images) | |
images = torch.tensor(images) / 255 | |
original_images = images.clone() | |
rotation_matrix = torch.tensor([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).float() | |
images = images @ rotation_matrix | |
images = protect_original_image_in_plot(original_images, images) | |
images = to_pil_images(images, resize=False) | |
return images | |
def flip_rgb_gallery(images, axis=0): | |
if images is None or len(images) == 0: | |
gr.Warning("No images selected.") | |
return [] | |
# read webp images | |
images = [Image.open(image[0]).convert("RGB") for image in images] | |
images = [np.array(image).astype(np.float32) for image in images] | |
images = np.stack(images) | |
images = torch.tensor(images) / 255 | |
original_images = images.clone() | |
images = 1 - images | |
images = protect_original_image_in_plot(original_images, images) | |
images = to_pil_images(images, resize=False) | |
return images | |
def add_rotate_flip_buttons(output_gallery): | |
with gr.Row(): | |
rotate_button = gr.Button("🔄 Rotate", elem_id="rotate_button", variant='secondary') | |
rotate_button.click(sequence_rotate_rgb_gallery, inputs=[output_gallery], outputs=[output_gallery]) | |
flip_button = gr.Button("🔃 Flip", elem_id="flip_button", variant='secondary') | |
flip_button.click(flip_rgb_gallery, inputs=[output_gallery], outputs=[output_gallery]) | |
return rotate_button, flip_button | |
def add_download_button(gallery, filename_prefix="output"): | |
def make_3x5_plot(images): | |
plot_list = [] | |
# Split the list of images into chunks of 15 | |
chunks = [images[i:i + 15] for i in range(0, len(images), 15)] | |
for chunk in chunks: | |
fig, axs = plt.subplots(3, 4, figsize=(12, 9)) | |
for ax in axs.flatten(): | |
ax.axis("off") | |
for ax, img in zip(axs.flatten(), chunk): | |
img = img.convert("RGB") | |
ax.imshow(img) | |
plt.tight_layout(h_pad=0.5, w_pad=0.3) | |
# Generate a unique filename | |
filename = uuid.uuid4() | |
tmp_path = f"/tmp/{filename}.png" | |
# Save the plot to the temporary file | |
plt.savefig(tmp_path, bbox_inches='tight', dpi=144) | |
# Open the saved image | |
img = Image.open(tmp_path) | |
img = img.convert("RGB") | |
img = copy.deepcopy(img) | |
# Remove the temporary file | |
os.remove(tmp_path) | |
plot_list.append(img) | |
plt.close() | |
return plot_list | |
def delete_file_after_delay(file_path, delay): | |
def delete_file(): | |
if os.path.exists(file_path): | |
os.remove(file_path) | |
timer = threading.Timer(delay, delete_file) | |
timer.start() | |
def create_zip_file(images, filename_prefix=filename_prefix): | |
if images is None or len(images) == 0: | |
gr.Warning("No images selected.") | |
return None | |
gr.Info("Creating zip file for download...") | |
images = [image[0] for image in images] | |
if isinstance(images[0], str): | |
images = [Image.open(image) for image in images] | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
zip_filename = f"/tmp/gallery_download/{filename_prefix}_{timestamp}.zip" | |
os.makedirs(os.path.dirname(zip_filename), exist_ok=True) | |
plots = make_3x5_plot(images) | |
with zipfile.ZipFile(zip_filename, 'w') as zipf: | |
# Create a temporary directory to store images and plots | |
temp_dir = f"/tmp/gallery_download/images/{uuid.uuid4()}" | |
os.makedirs(temp_dir) | |
try: | |
# Save images to the temporary directory | |
for i, img in enumerate(images): | |
img = img.convert("RGB") | |
img_path = os.path.join(temp_dir, f"single_{i:04d}.jpg") | |
img.save(img_path) | |
zipf.write(img_path, f"single_{i:04d}.jpg") | |
# Save plots to the temporary directory | |
for i, plot in enumerate(plots): | |
plot = plot.convert("RGB") | |
plot_path = os.path.join(temp_dir, f"grid_{i:04d}.jpg") | |
plot.save(plot_path) | |
zipf.write(plot_path, f"grid_{i:04d}.jpg") | |
finally: | |
# Clean up the temporary directory | |
for file in os.listdir(temp_dir): | |
os.remove(os.path.join(temp_dir, file)) | |
os.rmdir(temp_dir) | |
# Schedule the deletion of the zip file after 24 hours (86400 seconds) | |
delete_file_after_delay(zip_filename, 86400) | |
gr.Info(f"File is ready for download: {os.path.basename(zip_filename)}") | |
return gr.update(value=zip_filename, interactive=True) | |
with gr.Row(): | |
create_file_button = gr.Button("📦 Pack", elem_id="create_file_button", variant='secondary') | |
download_button = gr.DownloadButton(label="📥 Download", value=None, variant='secondary', elem_id="download_button", interactive=False) | |
create_file_button.click(create_zip_file, inputs=[gallery], outputs=[download_button]) | |
def warn_on_click(filename): | |
if filename is None: | |
gr.Warning("No file to download, please `📦 Pack` first.") | |
interactive = filename is not None | |
return gr.update(interactive=interactive) | |
download_button.click(warn_on_click, inputs=[download_button], outputs=[download_button]) | |
return create_file_button, download_button | |
def make_output_images_section(markdown=True, button=True): | |
if markdown: | |
gr.Markdown('### Output Images') | |
output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=True, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, interactive=False) | |
if button: | |
add_rotate_flip_buttons(output_gallery) | |
return output_gallery | |
def make_parameters_section(is_lisa=False, model_ratio=True): | |
gr.Markdown("### Parameters <a style='color: #0044CC;' href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Help</a>") | |
from ncut_pytorch.backbone import list_models, get_demo_model_names | |
model_names = list_models() | |
model_names = sorted(model_names) | |
def get_filtered_model_names(name): | |
return [m for m in model_names if name.lower() in m.lower()] | |
def get_default_model_name(name): | |
lst = get_filtered_model_names(name) | |
if len(lst) > 1: | |
return lst[1] | |
return lst[0] | |
if is_lisa: | |
model_dropdown = gr.Dropdown(["LISA(xinlai/LISA-7B-v1)"], label="Backbone", value="LISA(xinlai/LISA-7B-v1)", elem_id="model_name") | |
layer_slider = gr.Slider(1, 6, step=1, label="LISA decoder: Layer index", value=6, elem_id="layer", visible=False) | |
layer_names = ["dec_0_input", "dec_0_attn", "dec_0_block", "dec_1_input", "dec_1_attn", "dec_1_block"] | |
positive_prompt = gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=False) | |
negative_prompt = gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=False) | |
node_type_dropdown = gr.Dropdown(layer_names, label="LISA (SAM) decoder: Layer and Node", value="dec_1_block", elem_id="node_type") | |
else: | |
model_radio = gr.Radio(["CLIP", "DiNO", "Diffusion", "ImageNet", "MAE", "SAM"], label="Backbone", value="DiNO", elem_id="model_radio", show_label=True, visible=model_ratio) | |
model_dropdown = gr.Dropdown(get_filtered_model_names("DiNO"), label="", value="DiNO(dino_vitb8_448)", elem_id="model_name", show_label=False) | |
model_radio.change(fn=lambda x: gr.update(choices=get_filtered_model_names(x), value=get_default_model_name(x)), inputs=model_radio, outputs=[model_dropdown]) | |
layer_slider = gr.Slider(1, 12, step=1, label="Backbone: Layer index", value=10, elem_id="layer") | |
positive_prompt = gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'") | |
positive_prompt.visible = False | |
negative_prompt = gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'") | |
negative_prompt.visible = False | |
node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?") | |
num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for smaller clusters') | |
def change_layer_slider(model_name): | |
# SD2, UNET | |
if "stable" in model_name.lower() and "diffusion" in model_name.lower(): | |
from ncut_pytorch.backbone import SD_KEY_DICT | |
default_layer = 'up_2_resnets_1_block' if 'diffusion-3' not in model_name else 'block_23' | |
return (gr.Slider(1, 49, step=1, label="Diffusion: Timestep (Noise)", value=5, elem_id="layer", visible=True, info="Noise level, 50 is max noise"), | |
gr.Dropdown(SD_KEY_DICT[model_name], label="Diffusion: Layer and Node", value=default_layer, elem_id="node_type", info="U-Net (v1, v2) or DiT (v3)")) | |
if model_name == "LISSL(xinlai/LISSL-7B-v1)": | |
layer_names = ["dec_0_input", "dec_0_attn", "dec_0_block", "dec_1_input", "dec_1_attn", "dec_1_block"] | |
default_layer = "dec_1_block" | |
return (gr.Slider(1, 6, step=1, label="LISA decoder: Layer index", value=6, elem_id="layer", visible=False, info=""), | |
gr.Dropdown(layer_names, label="LISA decoder: Layer and Node", value=default_layer, elem_id="node_type")) | |
layer_dict = LAYER_DICT | |
if model_name in layer_dict: | |
value = layer_dict[model_name] | |
return (gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info=""), | |
gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")) | |
else: | |
value = 12 | |
return (gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info=""), | |
gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")) | |
model_dropdown.change(fn=change_layer_slider, inputs=model_dropdown, outputs=[layer_slider, node_type_dropdown]) | |
def change_prompt_text(model_name): | |
if model_name in promptable_diffusion_models: | |
return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=True), | |
gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=True)) | |
return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=False), | |
gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=False)) | |
model_dropdown.change(fn=change_prompt_text, inputs=model_dropdown, outputs=[positive_prompt, negative_prompt]) | |
with gr.Accordion("Advanced Parameters: NCUT", open=False): | |
gr.Markdown("<a href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Docs: How to Get Better Segmentation</a>") | |
affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation") | |
num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation") | |
# sampling_method_dropdown = gr.Dropdown(["QuickFPS", "random"], label="NCUT: Sampling method", value="QuickFPS", elem_id="sampling_method", info="Nyström approximation") | |
sampling_method_dropdown = gr.Radio(["QuickFPS", "random"], label="NCUT: Sampling method", value="QuickFPS", elem_id="sampling_method") | |
# ncut_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="NCUT: Distance metric", value="cosine", elem_id="ncut_metric") | |
ncut_metric_dropdown = gr.Radio(["euclidean", "cosine"], label="NCUT: Distance metric", value="cosine", elem_id="ncut_metric") | |
ncut_knn_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation") | |
ncut_indirect_connection = gr.Checkbox(label="indirect_connection", value=True, elem_id="ncut_indirect_connection", info="Add indirect connection to the sub-sampled graph") | |
ncut_make_orthogonal = gr.Checkbox(label="make_orthogonal", value=False, elem_id="ncut_make_orthogonal", info="Apply post-hoc eigenvectors orthogonalization") | |
with gr.Accordion("Advanced Parameters: Visualization", open=False): | |
# embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_sphere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method") | |
embedding_method_dropdown = gr.Radio(["tsne_3d", "umap_3d", "umap_sphere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method") | |
# embedding_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="t-SNE/UMAP metric", value="euclidean", elem_id="embedding_metric") | |
embedding_metric_dropdown = gr.Radio(["euclidean", "cosine"], label="t-SNE/UMAP: metric", value="euclidean", elem_id="embedding_metric") | |
num_sample_tsne_slider = gr.Slider(100, 10000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation") | |
knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation") | |
perplexity_slider = gr.Slider(10, 1000, step=10, label="t-SNE: perplexity", value=150, elem_id="perplexity") | |
n_neighbors_slider = gr.Slider(10, 1000, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors") | |
min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist") | |
return [model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, | |
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt] | |
custom_css = """ | |
#unlock_button { | |
all: unset !important; | |
} | |
.form:has(#unlock_button) { | |
all: unset !important; | |
} | |
""" | |
demo = gr.Blocks( | |
theme=gr.themes.Base(spacing_size='md', text_size='lg', primary_hue='blue', neutral_hue='slate', secondary_hue='pink'), | |
# fill_width=False, | |
# title="ncut-pytorch", | |
css=custom_css, | |
) | |
with demo: | |
with gr.Tab('AlignedCut'): | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section() | |
num_images_slider.value = 30 | |
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False) | |
with gr.Column(scale=5, min_width=200): | |
output_gallery = make_output_images_section() | |
cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[2], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False) | |
[ | |
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, | |
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
] = make_parameters_section() | |
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
submit_button.click( | |
partial(run_fn, n_ret=2, plot_clusters=True), | |
inputs=[ | |
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
positive_prompt, negative_prompt, | |
false_placeholder, no_prompt, no_prompt, no_prompt, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
], | |
outputs=[output_gallery, cluster_gallery, logging_text], | |
api_name="API_AlignedCut", | |
scroll_to_output=True, | |
) | |
with gr.Tab('AlignedCut (Advanced)', visible=False) as tab_alignedcut_advanced: | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True) | |
num_images_slider.value = 100 | |
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False, lines=20) | |
with gr.Column(scale=5, min_width=200): | |
output_gallery = make_output_images_section() | |
add_download_button(output_gallery, "ncut_embed") | |
norm_gallery = gr.Gallery(value=[], label="Eigenvector Magnitude", show_label=True, elem_id="eig_norm", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False) | |
add_download_button(norm_gallery, "eig_norm") | |
cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[4], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False) | |
add_download_button(cluster_gallery, "clusters") | |
[ | |
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, | |
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
] = make_parameters_section() | |
num_eig_slider.value = 100 | |
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
submit_button.click( | |
partial(run_fn, n_ret=3, plot_clusters=True, alignedcut_eig_norm_plot=True, advanced=True), | |
inputs=[ | |
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
positive_prompt, negative_prompt, | |
false_placeholder, no_prompt, no_prompt, no_prompt, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
], | |
outputs=[output_gallery, cluster_gallery, norm_gallery, logging_text], | |
scroll_to_output=True, | |
) | |
with gr.Tab('NCut'): | |
gr.Markdown('#### NCut (Legacy), not aligned, no Nyström approximation') | |
gr.Markdown('Each image is solved independently, <em>color is <b>not</b> aligned across images</em>') | |
gr.Markdown('---') | |
gr.Markdown('<p style="text-align: center;"><b>NCut vs. AlignedCut</b></p>') | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown('#### Pros') | |
gr.Markdown('- Easy Solution. Use less eigenvectors.') | |
gr.Markdown('- Exact solution. No Nyström approximation.') | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown('#### Cons') | |
gr.Markdown('- Not aligned. Distance is not preserved across images. No pseudo-labeling or correspondence.') | |
gr.Markdown('- Poor complexity scaling. Unable to handle large number of pixels.') | |
gr.Markdown('---') | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown(' ') | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown('<em>color is <b>not</b> aligned across images</em> 👇') | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section() | |
with gr.Column(scale=5, min_width=200): | |
output_gallery = make_output_images_section() | |
[ | |
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, | |
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
] = make_parameters_section() | |
old_school_ncut_checkbox = gr.Checkbox(label="Old school NCut", value=True, elem_id="old_school_ncut") | |
invisible_list = [old_school_ncut_checkbox, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
num_sample_tsne_slider, knn_tsne_slider, sampling_method_dropdown, ncut_metric_dropdown] | |
for item in invisible_list: | |
item.visible = False | |
# logging text box | |
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
submit_button.click( | |
run_fn, | |
inputs=[ | |
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
positive_prompt, negative_prompt, | |
false_placeholder, no_prompt, no_prompt, no_prompt, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown, | |
old_school_ncut_checkbox | |
], | |
outputs=[output_gallery, logging_text], | |
api_name="API_NCut", | |
) | |
with gr.Tab('Recursive Cut'): | |
gr.Markdown('NCUT can be applied recursively, the eigenvectors from previous iteration is the input for the next iteration NCUT. ') | |
gr.Markdown('__Recursive NCUT__ can amplify or weaken the connections, depending on the `affinity_focal_gamma` setting, please see [Documentation](https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/#recursive-ncut)') | |
gr.Markdown('---') | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section() | |
num_images_slider.value = 100 | |
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown('### Output (Recursion #1)') | |
l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=True, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
add_rotate_flip_buttons(l1_gallery) | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown('### Output (Recursion #2)') | |
l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=True, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
add_rotate_flip_buttons(l2_gallery) | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown('### Output (Recursion #3)') | |
l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=True, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
add_rotate_flip_buttons(l3_gallery) | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
with gr.Accordion("➡️ Recursion config", open=True): | |
l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig") | |
l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig") | |
l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=50, elem_id="l3_num_eig") | |
metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric") | |
l1_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #1: Affinity focal gamma", value=0.7, elem_id="recursion_l1_gamma") | |
l2_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #2: Affinity focal gamma", value=0.7, elem_id="recursion_l2_gamma") | |
l3_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #3: Affinity focal gamma", value=0.5, elem_id="recursion_l3_gamma") | |
with gr.Column(scale=5, min_width=200): | |
[ | |
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, | |
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
] = make_parameters_section() | |
num_eig_slider.visible = False | |
affinity_focal_gamma_slider.visible = False | |
true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder") | |
true_placeholder.visible = False | |
false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder") | |
false_placeholder.visible = False | |
number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder") | |
number_placeholder.visible = False | |
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
submit_button.click( | |
partial(run_fn, n_ret=3), | |
inputs=[ | |
input_gallery, model_dropdown, layer_slider, l1_num_eig_slider, node_type_dropdown, | |
positive_prompt, negative_prompt, | |
false_placeholder, no_prompt, no_prompt, no_prompt, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown, | |
false_placeholder, number_placeholder, true_placeholder, | |
l2_num_eig_slider, l3_num_eig_slider, metric_dropdown, | |
l1_affinity_focal_gamma_slider, l2_affinity_focal_gamma_slider, l3_affinity_focal_gamma_slider | |
], | |
outputs=[l1_gallery, l2_gallery, l3_gallery, logging_text], | |
api_name="API_RecursiveCut" | |
) | |
with gr.Tab('Recursive Cut (Advanced)', visible=False) as tab_recursivecut_advanced: | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True) | |
num_images_slider.value = 100 | |
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", lines=20) | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown('### Output (Recursion #1)') | |
l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=True, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
add_rotate_flip_buttons(l1_gallery) | |
add_download_button(l1_gallery, "ncut_embed_recur1") | |
l1_norm_gallery = gr.Gallery(value=[], label="Recursion #1 Eigenvector Magnitude", show_label=True, elem_id="eig_norm", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False) | |
add_download_button(l1_norm_gallery, "eig_norm_recur1") | |
l1_cluster_gallery = gr.Gallery(value=[], label="Recursion #1 Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[4], object_fit="contain", height='auto', show_share_button=True, preview=False, interactive=False) | |
add_download_button(l1_cluster_gallery, "clusters_recur1") | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown('### Output (Recursion #2)') | |
l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=True, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
add_rotate_flip_buttons(l2_gallery) | |
add_download_button(l2_gallery, "ncut_embed_recur2") | |
l2_norm_gallery = gr.Gallery(value=[], label="Recursion #2 Eigenvector Magnitude", show_label=True, elem_id="eig_norm", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False) | |
add_download_button(l2_norm_gallery, "eig_norm_recur2") | |
l2_cluster_gallery = gr.Gallery(value=[], label="Recursion #2 Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[4], object_fit="contain", height='auto', show_share_button=True, preview=False, interactive=False) | |
add_download_button(l2_cluster_gallery, "clusters_recur2") | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown('### Output (Recursion #3)') | |
l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=True, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
add_rotate_flip_buttons(l3_gallery) | |
add_download_button(l3_gallery, "ncut_embed_recur3") | |
l3_norm_gallery = gr.Gallery(value=[], label="Recursion #3 Eigenvector Magnitude", show_label=True, elem_id="eig_norm", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False) | |
add_download_button(l3_norm_gallery, "eig_norm_recur3") | |
l3_cluster_gallery = gr.Gallery(value=[], label="Recursion #3 Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[4], object_fit="contain", height='auto', show_share_button=True, preview=False, interactive=False) | |
add_download_button(l3_cluster_gallery, "clusters_recur3") | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
with gr.Accordion("➡️ Recursion config", open=True): | |
l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig") | |
l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig") | |
l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=50, elem_id="l3_num_eig") | |
metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric") | |
l1_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #1: Affinity focal gamma", value=0.7, elem_id="recursion_l1_gamma") | |
l2_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #2: Affinity focal gamma", value=0.7, elem_id="recursion_l2_gamma") | |
l3_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #3: Affinity focal gamma", value=0.5, elem_id="recursion_l3_gamma") | |
with gr.Column(scale=5, min_width=200): | |
[ | |
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, | |
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
] = make_parameters_section() | |
num_eig_slider.visible = False | |
affinity_focal_gamma_slider.visible = False | |
true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder") | |
true_placeholder.visible = False | |
false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder") | |
false_placeholder.visible = False | |
number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder") | |
number_placeholder.visible = False | |
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
submit_button.click( | |
partial(run_fn, n_ret=9, advanced=True), | |
inputs=[ | |
input_gallery, model_dropdown, layer_slider, l1_num_eig_slider, node_type_dropdown, | |
positive_prompt, negative_prompt, | |
false_placeholder, no_prompt, no_prompt, no_prompt, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown, | |
false_placeholder, number_placeholder, true_placeholder, | |
l2_num_eig_slider, l3_num_eig_slider, metric_dropdown, | |
l1_affinity_focal_gamma_slider, l2_affinity_focal_gamma_slider, l3_affinity_focal_gamma_slider | |
], | |
outputs=[l1_gallery, l2_gallery, l3_gallery, l1_norm_gallery, l2_norm_gallery, l3_norm_gallery, l1_cluster_gallery, l2_cluster_gallery, l3_cluster_gallery, logging_text], | |
) | |
with gr.Tab('Video'): | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
video_input_gallery, submit_button, clear_video_button, max_frame_number = make_input_video_section() | |
with gr.Column(scale=5, min_width=200): | |
video_output_gallery = gr.Video(value=None, label="NCUT Embedding", elem_id="ncut", height="auto", show_share_button=False) | |
[ | |
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, | |
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
] = make_parameters_section() | |
num_sample_tsne_slider.value = 1000 | |
perplexity_slider.value = 500 | |
n_neighbors_slider.value = 500 | |
knn_tsne_slider.value = 20 | |
# logging text box | |
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
clear_video_button.click(lambda x: (None, None), outputs=[video_input_gallery, video_output_gallery]) | |
place_holder_false = gr.Checkbox(label="Place holder", value=False, elem_id="place_holder_false") | |
place_holder_false.visible = False | |
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
submit_button.click( | |
run_fn, | |
inputs=[ | |
video_input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
positive_prompt, negative_prompt, | |
false_placeholder, no_prompt, no_prompt, no_prompt, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown, | |
place_holder_false, max_frame_number | |
], | |
outputs=[video_output_gallery, logging_text], | |
api_name="API_VideoCut", | |
) | |
with gr.Tab('Text'): | |
try: | |
from app_text import make_demo | |
except ImportError: | |
print("Debugging") | |
from draft_gradio_app_text import make_demo | |
make_demo() | |
with gr.Tab('Vision-Language'): | |
gr.Markdown('[LISA](https://arxiv.org/pdf/2308.00692) is a vision-language model. Input a text prompt and image, LISA generate segmentation masks.') | |
gr.Markdown('In the mask decoder layers, LISA updates the image features w.r.t. the text prompt') | |
gr.Markdown('This page aims to see how the text prompt affects the image features') | |
gr.Markdown('---') | |
gr.Markdown('<p style="text-align: center;">Color is <b>aligned</b> across 3 prompts. NCUT is computed on the concatenated features from 3 prompts.</p>') | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown('### Output (Prompt #1)') | |
l1_gallery = gr.Gallery(format='png', value=[], label="Prompt #1", show_label=False, elem_id="ncut_p1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
prompt1 = gr.Textbox(label="Input Prompt #1", elem_id="prompt1", value="where is the person, include the clothes, don't include the guitar and chair", lines=3) | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown('### Output (Prompt #2)') | |
l2_gallery = gr.Gallery(format='png', value=[], label="Prompt #2", show_label=False, elem_id="ncut_p2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
prompt2 = gr.Textbox(label="Input Prompt #2", elem_id="prompt2", value="where is the Gibson Les Pual guitar", lines=3) | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown('### Output (Prompt #3)') | |
l3_gallery = gr.Gallery(format='png', value=[], label="Prompt #3", show_label=False, elem_id="ncut_p3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
prompt3 = gr.Textbox(label="Input Prompt #3", elem_id="prompt3", value="where is the floor", lines=3) | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section() | |
with gr.Column(scale=5, min_width=200): | |
[ | |
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, | |
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
] = make_parameters_section(is_lisa=True) | |
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
galleries = [l1_gallery, l2_gallery, l3_gallery] | |
true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder", visible=False) | |
submit_button.click( | |
partial(run_fn, n_ret=len(galleries)), | |
inputs=[ | |
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
positive_prompt, negative_prompt, | |
true_placeholder, prompt1, prompt2, prompt3, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
], | |
outputs=galleries + [logging_text], | |
) | |
with gr.Tab('Model Aligned'): | |
gr.Markdown('This page reproduce the results from the paper [AlignedCut](https://arxiv.org/abs/2406.18344)') | |
gr.Markdown('---') | |
gr.Markdown('**Features are aligned across models and layers.** A linear alignment transform is trained for each model/layer, learning signal comes from 1) fMRI brain activation and 2) segmentation preserving eigen-constraints.') | |
gr.Markdown('NCUT is computed on the concatenated graph of all models, layers, and images. Color is **aligned** across all models and layers.') | |
gr.Markdown('') | |
gr.Markdown("To see a good pattern, you will need to load 100~1000 images. 100 images need 10sec for RTX4090. Running out of HuggingFace GPU Quota? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn") | |
gr.Markdown('---') | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section() | |
num_images_slider.value = 100 | |
with gr.Column(scale=5, min_width=200): | |
output_gallery = make_output_images_section() | |
gr.Markdown('### TIP1: use the `full-screen` button, and use `arrow keys` to navigate') | |
gr.Markdown('---') | |
gr.Markdown('Model: CLIP(ViT-B-16/openai), DiNOv2reg(dinov2_vitb14_reg), MAE(vit_base)') | |
gr.Markdown('Layer type: attention output (attn), without sum of residual') | |
gr.Markdown('### TIP2: for large image set, please increase the `num_sample` for t-SNE and NCUT') | |
gr.Markdown('---') | |
[ | |
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, | |
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
] = make_parameters_section(model_ratio=False) | |
model_dropdown.value = "AlignedThreeModelAttnNodes" | |
model_dropdown.visible = False | |
layer_slider.visible = False | |
node_type_dropdown.visible = False | |
num_sample_ncut_slider.value = 10000 | |
num_sample_tsne_slider.value = 1000 | |
# logging text box | |
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
submit_button.click( | |
run_fn, | |
inputs=[ | |
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
positive_prompt, negative_prompt, | |
false_placeholder, no_prompt, no_prompt, no_prompt, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
], | |
# outputs=galleries + [logging_text], | |
outputs=[output_gallery, logging_text], | |
) | |
with gr.Tab('Model Aligned (Advanced)', visible=False) as tab_model_aligned_advanced: | |
gr.Markdown('This page reproduce the results from the paper [AlignedCut](https://arxiv.org/abs/2406.18344)') | |
gr.Markdown('---') | |
gr.Markdown('**Features are aligned across models and layers.** A linear alignment transform is trained for each model/layer, learning signal comes from 1) fMRI brain activation and 2) segmentation preserving eigen-constraints.') | |
gr.Markdown('NCUT is computed on the concatenated graph of all models, layers, and images. Color is **aligned** across all models and layers.') | |
gr.Markdown('') | |
gr.Markdown("To see a good pattern, you will need to load 100~1000 images. 100 images need 10sec for RTX4090. Running out of HuggingFace GPU Quota? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn") | |
gr.Markdown('---') | |
# with gr.Row(): | |
# with gr.Column(scale=5, min_width=200): | |
# gr.Markdown('### Output (Recursion #1)') | |
# l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=False, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
# add_output_images_buttons(l1_gallery) | |
# with gr.Column(scale=5, min_width=200): | |
# gr.Markdown('### Output (Recursion #2)') | |
# l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=False, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
# add_output_images_buttons(l2_gallery) | |
# with gr.Column(scale=5, min_width=200): | |
# gr.Markdown('### Output (Recursion #3)') | |
# l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=False, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
# add_output_images_buttons(l3_gallery) | |
gr.Markdown('### Output (Recursion #1)') | |
l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=True, elem_id="ncut_l1", columns=[100], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False, preview=True) | |
add_rotate_flip_buttons(l1_gallery) | |
add_download_button(l1_gallery, "modelaligned_recur1") | |
gr.Markdown('### Output (Recursion #2)') | |
l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=True, elem_id="ncut_l2", columns=[100], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False, preview=True) | |
add_rotate_flip_buttons(l2_gallery) | |
add_download_button(l2_gallery, "modelaligned_recur2") | |
gr.Markdown('### Output (Recursion #3)') | |
l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=True, elem_id="ncut_l3", columns=[100], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False, preview=True) | |
add_rotate_flip_buttons(l3_gallery) | |
add_download_button(l3_gallery, "modelaligned_recur3") | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True) | |
num_images_slider.value = 100 | |
with gr.Column(scale=5, min_width=200): | |
with gr.Accordion("➡️ Recursion config", open=True): | |
l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig") | |
l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig") | |
l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=50, elem_id="l3_num_eig") | |
metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric") | |
l1_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #1: Affinity focal gamma", value=0.5, elem_id="recursion_l1_gamma") | |
l2_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #2: Affinity focal gamma", value=0.5, elem_id="recursion_l2_gamma") | |
l3_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #3: Affinity focal gamma", value=0.5, elem_id="recursion_l3_gamma") | |
gr.Markdown('---') | |
gr.Markdown('Model: CLIP(ViT-B-16/openai), DiNOv2reg(dinov2_vitb14_reg), MAE(vit_base)') | |
gr.Markdown('Layer type: attention output (attn), without sum of residual') | |
[ | |
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, | |
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
] = make_parameters_section(model_ratio=False) | |
num_eig_slider.visible = False | |
affinity_focal_gamma_slider.visible = False | |
model_dropdown.value = "AlignedThreeModelAttnNodes" | |
model_dropdown.visible = False | |
layer_slider.visible = False | |
node_type_dropdown.visible = False | |
num_sample_ncut_slider.value = 10000 | |
num_sample_tsne_slider.value = 1000 | |
# logging text box | |
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder") | |
true_placeholder.visible = False | |
false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder") | |
false_placeholder.visible = False | |
number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder") | |
number_placeholder.visible = False | |
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
submit_button.click( | |
partial(run_fn, n_ret=3, advanced=True), | |
inputs=[ | |
input_gallery, model_dropdown, layer_slider, l1_num_eig_slider, node_type_dropdown, | |
positive_prompt, negative_prompt, | |
false_placeholder, no_prompt, no_prompt, no_prompt, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown, | |
false_placeholder, number_placeholder, true_placeholder, | |
l2_num_eig_slider, l3_num_eig_slider, metric_dropdown, | |
l1_affinity_focal_gamma_slider, l2_affinity_focal_gamma_slider, l3_affinity_focal_gamma_slider | |
], | |
outputs=[l1_gallery, l2_gallery, l3_gallery, logging_text], | |
) | |
with gr.Tab('Compare Models'): | |
def add_one_model(i_model=1): | |
with gr.Column(scale=5, min_width=200) as col: | |
gr.Markdown(f'### Output Images') | |
output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=False, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary') | |
add_rotate_flip_buttons(output_gallery) | |
[ | |
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, | |
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
] = make_parameters_section() | |
# logging text box | |
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
submit_button.click( | |
run_fn, | |
inputs=[ | |
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
positive_prompt, negative_prompt, | |
false_placeholder, no_prompt, no_prompt, no_prompt, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
], | |
outputs=[output_gallery, logging_text] | |
) | |
return col | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section() | |
submit_button.visible = False | |
for i in range(3): | |
add_one_model() | |
# Create rows and buttons in a loop | |
rows = [] | |
buttons = [] | |
for i in range(4): | |
row = gr.Row(visible=False) | |
rows.append(row) | |
with row: | |
for j in range(4): | |
with gr.Column(scale=5, min_width=200): | |
add_one_model() | |
button = gr.Button("➕ Add Compare", elem_id=f"add_button_{i}", visible=False if i > 0 else True, scale=3) | |
buttons.append(button) | |
if i > 0: | |
# Reveal the current row and next button | |
buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=row) | |
buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=button) | |
# Hide the current button | |
buttons[i - 1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[i - 1]) | |
# Last button only reveals the last row and hides itself | |
buttons[-1].click(fn=lambda x: gr.update(visible=True), outputs=rows[-1]) | |
buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1]) | |
with gr.Tab('Compare Models (Advanced)', visible=False) as tab_compare_models_advanced: | |
target_images = gr.State([]) | |
input_images = gr.State([]) | |
def add_mlp_fitting_buttons(output_gallery, mlp_gallery, target_images=target_images, input_images=input_images): | |
with gr.Row(): | |
# mark_as_target_button = gr.Button("mark target", elem_id=f"mark_as_target_button_{output_gallery.elem_id}", variant='secondary') | |
# mark_as_input_button = gr.Button("mark input", elem_id=f"mark_as_input_button_{output_gallery.elem_id}", variant='secondary') | |
mark_as_target_button = gr.Button("🎯 Mark Target", elem_id=f"mark_as_target_button_{output_gallery.elem_id}", variant='secondary') | |
fit_to_target_button = gr.Button("🔴 [MLP] Fit", elem_id=f"fit_to_target_button_{output_gallery.elem_id}", variant='primary') | |
def mark_fn(images, text="target"): | |
if images is None: | |
raise gr.Error("No images selected") | |
if len(images) == 0: | |
raise gr.Error("No images selected") | |
num_images = len(images) | |
gr.Info(f"Marked {num_images} images as {text}") | |
images = [(Image.open(tup[0]), []) for tup in images] | |
return images | |
mark_as_target_button.click(partial(mark_fn, text="target"), inputs=[output_gallery], outputs=[target_images]) | |
# mark_as_input_button.click(partial(mark_fn, text="input"), inputs=[output_gallery], outputs=[input_images]) | |
with gr.Accordion("➡️ MLP Parameters", open=False): | |
num_layers_slider = gr.Slider(2, 10, step=1, label="Number of Layers", value=3, elem_id=f"num_layers_slider_{output_gallery.elem_id}") | |
width_slider = gr.Slider(128, 4096, step=128, label="Width", value=512, elem_id=f"width_slider_{output_gallery.elem_id}") | |
batch_size_slider = gr.Slider(32, 4096, step=32, label="Batch Size", value=128, elem_id=f"batch_size_slider_{output_gallery.elem_id}") | |
lr_slider = gr.Slider(1e-6, 1, step=1e-6, label="Learning Rate", value=3e-4, elem_id=f"lr_slider_{output_gallery.elem_id}") | |
fitting_steps_slider = gr.Slider(1000, 100000, step=1000, label="Fitting Steps", value=30000, elem_id=f"fitting_steps_slider_{output_gallery.elem_id}") | |
fps_sample_slider = gr.Slider(128, 50000, step=128, label="FPS Sample", value=10240, elem_id=f"fps_sample_slider_{output_gallery.elem_id}") | |
segmentation_loss_lambda_slider = gr.Slider(0, 100, step=0.01, label="Segmentation Preserving Loss Lambda", value=1, elem_id=f"segmentation_loss_lambda_slider_{output_gallery.elem_id}") | |
fit_to_target_button.click( | |
run_mlp_fit, | |
inputs=[output_gallery, target_images, num_layers_slider, width_slider, batch_size_slider, lr_slider, fitting_steps_slider, fps_sample_slider, segmentation_loss_lambda_slider], | |
outputs=[mlp_gallery], | |
) | |
def add_one_model(i_model=1): | |
with gr.Column(scale=5, min_width=200) as col: | |
gr.Markdown(f'### Output Images') | |
output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=True, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary') | |
add_rotate_flip_buttons(output_gallery) | |
add_download_button(output_gallery, f"ncut_embed") | |
mlp_gallery = gr.Gallery(format='png', value=[], label="MLP color align", show_label=True, elem_id=f"mlp{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
add_mlp_fitting_buttons(output_gallery, mlp_gallery) | |
add_download_button(mlp_gallery, f"mlp_color_align") | |
norm_gallery = gr.Gallery(value=[], label="Eigenvector Magnitude", show_label=True, elem_id=f"eig_norm{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False) | |
add_download_button(norm_gallery, f"eig_norm") | |
cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=True, elem_id=f"clusters{i_model}", columns=[2], rows=[4], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False) | |
add_download_button(cluster_gallery, f"clusters") | |
[ | |
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, | |
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
] = make_parameters_section() | |
# logging text box | |
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
submit_button.click( | |
partial(run_fn, n_ret=3, plot_clusters=True, alignedcut_eig_norm_plot=True, advanced=True), | |
inputs=[ | |
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
positive_prompt, negative_prompt, | |
false_placeholder, no_prompt, no_prompt, no_prompt, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
], | |
outputs=[output_gallery, cluster_gallery, norm_gallery, logging_text] | |
) | |
output_gallery.change(lambda x: gr.update(value=x), inputs=[output_gallery], outputs=[mlp_gallery]) | |
return output_gallery | |
galleries = [] | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True) | |
submit_button.visible = False | |
for i in range(3): | |
g = add_one_model() | |
galleries.append(g) | |
# Create rows and buttons in a loop | |
rows = [] | |
buttons = [] | |
for i in range(4): | |
row = gr.Row(visible=False) | |
rows.append(row) | |
with row: | |
for j in range(4): | |
with gr.Column(scale=5, min_width=200): | |
g = add_one_model() | |
galleries.append(g) | |
button = gr.Button("➕ Add Compare", elem_id=f"add_button_{i}", visible=False if i > 0 else True, scale=3) | |
buttons.append(button) | |
if i > 0: | |
# Reveal the current row and next button | |
buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=row) | |
buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=button) | |
# Hide the current button | |
buttons[i - 1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[i - 1]) | |
# Last button only reveals the last row and hides itself | |
buttons[-1].click(fn=lambda x: gr.update(visible=True), outputs=rows[-1]) | |
buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1]) | |
with gr.Tab('Directed (experimental)', visible=False) as tab_directed_ncut: | |
target_images = gr.State([]) | |
input_images = gr.State([]) | |
def add_mlp_fitting_buttons(output_gallery, mlp_gallery, target_images=target_images, input_images=input_images): | |
with gr.Row(): | |
# mark_as_target_button = gr.Button("mark target", elem_id=f"mark_as_target_button_{output_gallery.elem_id}", variant='secondary') | |
# mark_as_input_button = gr.Button("mark input", elem_id=f"mark_as_input_button_{output_gallery.elem_id}", variant='secondary') | |
mark_as_target_button = gr.Button("🎯 Mark Target", elem_id=f"mark_as_target_button_{output_gallery.elem_id}", variant='secondary') | |
fit_to_target_button = gr.Button("🔴 [MLP] Fit", elem_id=f"fit_to_target_button_{output_gallery.elem_id}", variant='primary') | |
def mark_fn(images, text="target"): | |
if images is None: | |
raise gr.Error("No images selected") | |
if len(images) == 0: | |
raise gr.Error("No images selected") | |
num_images = len(images) | |
gr.Info(f"Marked {num_images} images as {text}") | |
images = [(Image.open(tup[0]), []) for tup in images] | |
return images | |
mark_as_target_button.click(partial(mark_fn, text="target"), inputs=[output_gallery], outputs=[target_images]) | |
# mark_as_input_button.click(partial(mark_fn, text="input"), inputs=[output_gallery], outputs=[input_images]) | |
with gr.Accordion("➡️ MLP Parameters", open=False): | |
num_layers_slider = gr.Slider(2, 10, step=1, label="Number of Layers", value=3, elem_id=f"num_layers_slider_{output_gallery.elem_id}") | |
width_slider = gr.Slider(128, 4096, step=128, label="Width", value=512, elem_id=f"width_slider_{output_gallery.elem_id}") | |
batch_size_slider = gr.Slider(32, 4096, step=32, label="Batch Size", value=128, elem_id=f"batch_size_slider_{output_gallery.elem_id}") | |
lr_slider = gr.Slider(1e-6, 1, step=1e-6, label="Learning Rate", value=3e-4, elem_id=f"lr_slider_{output_gallery.elem_id}") | |
fitting_steps_slider = gr.Slider(1000, 100000, step=1000, label="Fitting Steps", value=30000, elem_id=f"fitting_steps_slider_{output_gallery.elem_id}") | |
fps_sample_slider = gr.Slider(128, 50000, step=128, label="FPS Sample", value=10240, elem_id=f"fps_sample_slider_{output_gallery.elem_id}") | |
segmentation_loss_lambda_slider = gr.Slider(0, 100, step=0.01, label="Segmentation Preserving Loss Lambda", value=1, elem_id=f"segmentation_loss_lambda_slider_{output_gallery.elem_id}") | |
fit_to_target_button.click( | |
run_mlp_fit, | |
inputs=[output_gallery, target_images, num_layers_slider, width_slider, batch_size_slider, lr_slider, fitting_steps_slider, fps_sample_slider, segmentation_loss_lambda_slider], | |
outputs=[mlp_gallery], | |
) | |
def make_parameters_section_2model(model_ratio=True): | |
gr.Markdown("### Parameters <a style='color: #0044CC;' href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Help</a>") | |
from ncut_pytorch.backbone import list_models, get_demo_model_names | |
model_names = list_models() | |
model_names = sorted(model_names) | |
# only CLIP DINO MAE is implemented for q k v | |
ok_models = ["CLIP(ViT", "DiNO(", "MAE("] | |
model_names = [m for m in model_names if any(ok in m for ok in ok_models)] | |
def get_filtered_model_names(name): | |
return [m for m in model_names if name.lower() in m.lower()] | |
def get_default_model_name(name): | |
lst = get_filtered_model_names(name) | |
if len(lst) > 1: | |
return lst[1] | |
return lst[0] | |
model_radio = gr.Radio(["CLIP", "DiNO", "MAE"], label="Backbone", value="DiNO", elem_id="model_radio", show_label=True, visible=model_ratio) | |
model_dropdown = gr.Dropdown(get_filtered_model_names("DiNO"), label="", value="DiNO(dino_vitb8_448)", elem_id="model_name", show_label=False) | |
model_radio.change(fn=lambda x: gr.update(choices=get_filtered_model_names(x), value=get_default_model_name(x)), inputs=model_radio, outputs=[model_dropdown]) | |
layer_slider = gr.Slider(1, 12, step=1, label="Backbone: Layer index", value=10, elem_id="layer") | |
positive_prompt = gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'") | |
positive_prompt.visible = False | |
negative_prompt = gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'") | |
negative_prompt.visible = False | |
node_type_dropdown = gr.Dropdown(['q', 'k', 'v'], | |
label="Left-side Node Type", value="q", elem_id="node_type", info="In directed case, left-side SVD eigenvector is taken") | |
node_type_dropdown2 = gr.Dropdown(['q', 'k', 'v'], | |
label="Right-side Node Type", value="k", elem_id="node_type2") | |
head_index_text = gr.Textbox(value='all', label="Head Index", elem_id="head_index", type="text", info="which attention heads to use, comma separated, e.g. 0,1,2") | |
make_symmetric = gr.Checkbox(label="Make Symmetric", value=False, elem_id="make_symmetric", info="make the graph symmetric by A = (A + A.T) / 2") | |
num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for smaller clusters') | |
def change_layer_slider(model_name): | |
# SD2, UNET | |
if "stable" in model_name.lower() and "diffusion" in model_name.lower(): | |
from ncut_pytorch.backbone import SD_KEY_DICT | |
default_layer = 'up_2_resnets_1_block' if 'diffusion-3' not in model_name else 'block_23' | |
return (gr.Slider(1, 49, step=1, label="Diffusion: Timestep (Noise)", value=5, elem_id="layer", visible=True, info="Noise level, 50 is max noise"), | |
gr.Dropdown(SD_KEY_DICT[model_name], label="Diffusion: Layer and Node", value=default_layer, elem_id="node_type", info="U-Net (v1, v2) or DiT (v3)")) | |
if model_name == "LISSL(xinlai/LISSL-7B-v1)": | |
layer_names = ["dec_0_input", "dec_0_attn", "dec_0_block", "dec_1_input", "dec_1_attn", "dec_1_block"] | |
default_layer = "dec_1_block" | |
return (gr.Slider(1, 6, step=1, label="LISA decoder: Layer index", value=6, elem_id="layer", visible=False, info=""), | |
gr.Dropdown(layer_names, label="LISA decoder: Layer and Node", value=default_layer, elem_id="node_type")) | |
layer_dict = LAYER_DICT | |
if model_name in layer_dict: | |
value = layer_dict[model_name] | |
return gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info="") | |
else: | |
value = 12 | |
return gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info="") | |
model_dropdown.change(fn=change_layer_slider, inputs=model_dropdown, outputs=layer_slider) | |
def change_prompt_text(model_name): | |
if model_name in promptable_diffusion_models: | |
return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=True), | |
gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=True)) | |
return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=False), | |
gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=False)) | |
model_dropdown.change(fn=change_prompt_text, inputs=model_dropdown, outputs=[positive_prompt, negative_prompt]) | |
with gr.Accordion("Advanced Parameters: NCUT", open=False): | |
gr.Markdown("<a href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Docs: How to Get Better Segmentation</a>") | |
affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation") | |
num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation") | |
# sampling_method_dropdown = gr.Dropdown(["QuickFPS", "random"], label="NCUT: Sampling method", value="QuickFPS", elem_id="sampling_method", info="Nyström approximation") | |
sampling_method_dropdown = gr.Radio(["QuickFPS", "random"], label="NCUT: Sampling method", value="QuickFPS", elem_id="sampling_method") | |
# ncut_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="NCUT: Distance metric", value="cosine", elem_id="ncut_metric") | |
ncut_metric_dropdown = gr.Radio(["euclidean", "cosine"], label="NCUT: Distance metric", value="cosine", elem_id="ncut_metric") | |
ncut_knn_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation") | |
ncut_indirect_connection = gr.Checkbox(label="indirect_connection", value=False, elem_id="ncut_indirect_connection", info="TODO: Indirect connection is not implemented for directed NCUT", interactive=False) | |
ncut_make_orthogonal = gr.Checkbox(label="make_orthogonal", value=False, elem_id="ncut_make_orthogonal", info="Apply post-hoc eigenvectors orthogonalization") | |
with gr.Accordion("Advanced Parameters: Visualization", open=False): | |
# embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_sphere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method") | |
embedding_method_dropdown = gr.Radio(["tsne_3d", "umap_3d", "umap_sphere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method") | |
# embedding_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="t-SNE/UMAP metric", value="euclidean", elem_id="embedding_metric") | |
embedding_metric_dropdown = gr.Radio(["euclidean", "cosine"], label="t-SNE/UMAP: metric", value="euclidean", elem_id="embedding_metric") | |
num_sample_tsne_slider = gr.Slider(100, 10000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation") | |
knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation") | |
perplexity_slider = gr.Slider(10, 1000, step=10, label="t-SNE: perplexity", value=150, elem_id="perplexity") | |
n_neighbors_slider = gr.Slider(10, 1000, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors") | |
min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist") | |
return [model_dropdown, layer_slider, node_type_dropdown, node_type_dropdown2, head_index_text, make_symmetric, num_eig_slider, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, | |
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt] | |
def add_one_model(i_model=1): | |
with gr.Column(scale=5, min_width=200) as col: | |
gr.Markdown(f'### Output Images') | |
output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=True, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary') | |
add_rotate_flip_buttons(output_gallery) | |
add_download_button(output_gallery, f"ncut_embed") | |
mlp_gallery = gr.Gallery(format='png', value=[], label="MLP color align", show_label=True, elem_id=f"mlp{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) | |
add_mlp_fitting_buttons(output_gallery, mlp_gallery) | |
add_download_button(mlp_gallery, f"mlp_color_align") | |
norm_gallery = gr.Gallery(value=[], label="Eigenvector Magnitude", show_label=True, elem_id=f"eig_norm{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False) | |
add_download_button(norm_gallery, f"eig_norm") | |
cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=True, elem_id=f"clusters{i_model}", columns=[2], rows=[4], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False) | |
add_download_button(cluster_gallery, f"clusters") | |
[ | |
model_dropdown, layer_slider, node_type_dropdown, node_type_dropdown2, head_index_text, make_symmetric, num_eig_slider, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, | |
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
] = make_parameters_section_2model() | |
# logging text box | |
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
submit_button.click( | |
partial(run_fn, n_ret=3, plot_clusters=True, alignedcut_eig_norm_plot=True, advanced=True, directed=True), | |
inputs=[ | |
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
positive_prompt, negative_prompt, | |
false_placeholder, no_prompt, no_prompt, no_prompt, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown, | |
*[false_placeholder for _ in range(9)], | |
node_type_dropdown2, head_index_text, make_symmetric | |
], | |
outputs=[output_gallery, cluster_gallery, norm_gallery, logging_text] | |
) | |
output_gallery.change(lambda x: gr.update(value=x), inputs=[output_gallery], outputs=[mlp_gallery]) | |
return output_gallery | |
galleries = [] | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True) | |
submit_button.visible = False | |
for i in range(3): | |
g = add_one_model() | |
galleries.append(g) | |
# Create rows and buttons in a loop | |
rows = [] | |
buttons = [] | |
for i in range(4): | |
row = gr.Row(visible=False) | |
rows.append(row) | |
with row: | |
for j in range(4): | |
with gr.Column(scale=5, min_width=200): | |
g = add_one_model() | |
galleries.append(g) | |
button = gr.Button("➕ Add Compare", elem_id=f"add_button_{i}", visible=False if i > 0 else True, scale=3) | |
buttons.append(button) | |
if i > 0: | |
# Reveal the current row and next button | |
buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=row) | |
buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=button) | |
# Hide the current button | |
buttons[i - 1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[i - 1]) | |
# Last button only reveals the last row and hides itself | |
buttons[-1].click(fn=lambda x: gr.update(visible=True), outputs=rows[-1]) | |
buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1]) | |
with gr.Tab('Application'): | |
gr.Markdown("Draw some points on the image to find corrsponding segments in other images. E.g. click on one face to segment all the face. [Video Tutorial (coming...)]()") | |
with gr.Row(): | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown("### Step 0: Load Images") | |
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(markdown=False) | |
submit_button.visible = False | |
num_images_slider.value = 30 | |
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False) | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown("### Step 1: NCUT Embedding") | |
output_gallery = make_output_images_section(markdown=False, button=False) | |
submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary') | |
add_rotate_flip_buttons(output_gallery) | |
[ | |
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, | |
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
] = make_parameters_section() | |
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
submit_button.click( | |
partial(run_fn, n_ret=1), | |
inputs=[ | |
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
positive_prompt, negative_prompt, | |
false_placeholder, no_prompt, no_prompt, no_prompt, | |
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
], | |
outputs=[output_gallery, logging_text], | |
) | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown("### Step 2a: Pick an Image") | |
from gradio_image_prompter import ImagePrompter | |
image_type_radio = gr.Radio(["Original", "NCUT"], label="Image Display Type", value="Original", elem_id="image_type_radio") | |
with gr.Row(): | |
image1_slider = gr.Slider(0, 100, step=1, label="Image#1 Index", value=0, elem_id="image1_slider", interactive=True) | |
image2_slider = gr.Slider(0, 100, step=1, label="Image#2 Index", value=1, elem_id="image2_slider", interactive=True) | |
image3_slider = gr.Slider(0, 100, step=1, label="Image#3 Index", value=2, elem_id="image3_slider", interactive=True) | |
load_one_image_button = gr.Button("🔴 Load", elem_id="load_one_image_button", variant='primary') | |
gr.Markdown("### Step 2b: Draw Points") | |
gr.Markdown(""" | |
<h5> | |
🖱️ Left Click: Foreground </br> | |
🖱️ Middle Click: Background </br></br> | |
Top Right Buttons: </br> | |
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" | |
stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" | |
style="vertical-align: middle; height: 1em; width: 1em; display: inline;"> | |
<polyline points="1 4 1 10 7 10"></polyline> | |
<path d="M3.51 15a9 9 0 1 0 2.13-9.36L1 10"></path> | |
</svg> : | |
Remove Last Point | |
</br> | |
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" | |
style="vertical-align: middle; height: 1em; width: 1em; display: inline;"> | |
<g fill="none"> | |
<path fill="currentColor" d="m5.505 11.41l.53.53l-.53-.53ZM3 14.952h-.75H3ZM9.048 21v.75V21ZM11.41 5.505l-.53-.53l.53.53Zm1.831 12.34a.75.75 0 0 0 1.06-1.061l-1.06 1.06ZM7.216 9.697a.75.75 0 1 0-1.06 1.061l1.06-1.06Zm10.749 2.362l-5.905 5.905l1.06 1.06l5.905-5.904l-1.06-1.06Zm-11.93-.12l5.905-5.905l-1.06-1.06l-5.905 5.904l1.06 1.06Zm0 6.025c-.85-.85-1.433-1.436-1.812-1.933c-.367-.481-.473-.79-.473-1.08h-1.5c0 .749.312 1.375.78 1.99c.455.596 1.125 1.263 1.945 2.083l1.06-1.06Zm-1.06-7.086c-.82.82-1.49 1.488-1.945 2.084c-.468.614-.78 1.24-.78 1.99h1.5c0-.29.106-.6.473-1.08c.38-.498.962-1.083 1.812-1.933l-1.06-1.06Zm7.085 7.086c-.85.85-1.435 1.433-1.933 1.813c-.48.366-.79.472-1.08.472v1.5c.75 0 1.376-.312 1.99-.78c.596-.455 1.264-1.125 2.084-1.945l-1.06-1.06Zm-7.085 1.06c.82.82 1.487 1.49 2.084 1.945c.614.468 1.24.78 1.989.78v-1.5c-.29 0-.599-.106-1.08-.473c-.497-.38-1.083-.962-1.933-1.812l-1.06 1.06Zm12.99-12.99c.85.85 1.433 1.436 1.813 1.933c.366.481.472.79.472 1.08h1.5c0-.749-.312-1.375-.78-1.99c-.455-.596-1.125-1.263-1.945-2.083l-1.06 1.06Zm1.06 7.086c.82-.82 1.49-1.488 1.945-2.084c.468-.614.78-1.24.78-1.99h-1.5c0 .29-.106.6-.473 1.08c-.38.498-.962 1.083-1.812 1.933l1.06 1.06Zm0-8.146c-.82-.82-1.487-1.49-2.084-1.945c-.614-.468-1.24-.78-1.989-.78v1.5c.29 0 .599.106 1.08.473c.497.38 1.083.962 1.933 1.812l1.06-1.06Zm-7.085 1.06c.85-.85 1.435-1.433 1.933-1.812c.48-.367.79-.473 1.08-.473v-1.5c-.75 0-1.376.312-1.99.78c-.596.455-1.264 1.125-2.084 1.945l1.06 1.06Zm2.362 10.749L7.216 9.698l-1.06 1.061l7.085 7.085l1.06-1.06Z"></path> | |
<path stroke="currentColor" stroke-linecap="round" stroke-width="1.5" d="M9 21h12"></path></g> | |
</svg> : | |
Clear All Points | |
</br> | |
(Known issue: please manually clear the points after loading new image) | |
</h5> | |
""") | |
prompt_image1 = ImagePrompter(show_label=False, elem_id="prompt_image1", interactive=False) | |
prompt_image2 = ImagePrompter(show_label=False, elem_id="prompt_image2", interactive=False) | |
prompt_image3 = ImagePrompter(show_label=False, elem_id="prompt_image3", interactive=False) | |
# def update_number_of_images(images): | |
# if images is None: | |
# return gr.update(max=0, value=0) | |
# return gr.update(max=len(images)-1, value=1) | |
# input_gallery.change(update_number_of_images, inputs=input_gallery, outputs=image1_slider) | |
def update_prompt_image(original_images, ncut_images, image_type, index): | |
if image_type == "Original": | |
images = original_images | |
else: | |
images = ncut_images | |
if images is None: | |
return | |
total_len = len(images) | |
if total_len == 0: | |
return | |
if index >= total_len: | |
index = total_len - 1 | |
return ImagePrompter(value={'image': images[index][0], 'points': []}, interactive=True) | |
# return gr.Image(value=images[index][0], elem_id=f"prompt_image{randint}", interactive=True) | |
load_one_image_button.click(update_prompt_image, inputs=[input_gallery, output_gallery, image_type_radio, image1_slider], outputs=[prompt_image1]) | |
load_one_image_button.click(update_prompt_image, inputs=[input_gallery, output_gallery, image_type_radio, image2_slider], outputs=[prompt_image2]) | |
load_one_image_button.click(update_prompt_image, inputs=[input_gallery, output_gallery, image_type_radio, image3_slider], outputs=[prompt_image3]) | |
image3_slider.visible = False | |
prompt_image3.visible = False | |
with gr.Column(scale=5, min_width=200): | |
gr.Markdown("### Step 3: Segment and Crop") | |
mask_gallery = gr.Gallery(value=[], label="Segmentation Masks", show_label=True, elem_id="mask_gallery", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, interactive=False) | |
run_crop_button = gr.Button("🔴 RUN", elem_id="run_crop_button", variant='primary') | |
add_download_button(mask_gallery, "mask") | |
distance_threshold_slider = gr.Slider(0, 1, step=0.01, label="Mask Threshold (Foreground)", value=0.5, elem_id="distance_threshold", info="increase for smaller mask") | |
negative_distance_threshold_slider = gr.Slider(0, 1, step=0.01, label="Mask Threshold (Background)", value=0.5, elem_id="distance_threshold", info="increase for smaller mask") | |
overlay_image_checkbox = gr.Checkbox(label="Overlay Original Image", value=True, elem_id="overlay_image_checkbox") | |
# filter_small_area_checkbox = gr.Checkbox(label="Noise Reduction", value=True, elem_id="filter_small_area_checkbox") | |
distance_power_slider = gr.Slider(-3, 3, step=0.01, label="Distance Power", value=0.5, elem_id="distance_power", info="d = d^p", visible=False) | |
crop_gallery = gr.Gallery(value=[], label="Cropped Images", show_label=True, elem_id="crop_gallery", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, interactive=False) | |
add_download_button(crop_gallery, "cropped") | |
crop_expand_slider = gr.Slider(1.0, 2.0, step=0.1, label="Crop bbox Expand Factor", value=1.0, elem_id="crop_expand", info="increase for larger crop", visible=True) | |
area_threshold_slider = gr.Slider(0, 100, step=0.1, label="Area Threshold (%)", value=3, elem_id="area_threshold", info="for noise filtering (area of connected components)", visible=False) | |
# logging_image = gr.Image(value=None, label="Logging Image", elem_id="logging_image", interactive=False) | |
# prompt_image.change(lambda x: gr.update(value=x.get('image', None)), inputs=prompt_image, outputs=[logging_image]) | |
def relative_xy(prompts): | |
image = prompts['image'] | |
points = np.asarray(prompts['points']) | |
if points.shape[0] == 0: | |
return [], [] | |
is_point = points[:, 5] == 4.0 | |
points = points[is_point] | |
is_positive = points[:, 2] == 1.0 | |
is_negative = points[:, 2] == 0.0 | |
xy = points[:, :2].tolist() | |
if isinstance(image, str): | |
image = Image.open(image) | |
image = np.array(image) | |
h, w = image.shape[:2] | |
new_xy = [(x/w, y/h) for x, y in xy] | |
# print(new_xy) | |
return new_xy, is_positive | |
def xy_rgb(prompts, image_idx, ncut_images): | |
image = ncut_images[image_idx] | |
xy, is_positive = relative_xy(prompts) | |
rgbs = [] | |
for i, (x, y) in enumerate(xy): | |
rgb = image.getpixel((int(x*image.width), int(y*image.height))) | |
rgbs.append((rgb, is_positive[i])) | |
return rgbs | |
def run_crop(original_images, ncut_images, prompts1, prompts2, prompts3, image_idx1, image_idx2, image_idx3, | |
crop_expand, distance_threshold, distance_power, area_threshold, overlay_image, negative_distance_threshold): | |
ncut_images = [image[0] for image in ncut_images] | |
if len(ncut_images) == 0: | |
return [] | |
if isinstance(ncut_images[0], str): | |
ncut_images = [Image.open(image) for image in ncut_images] | |
rgbs = xy_rgb(prompts1, image_idx1, ncut_images) + \ | |
xy_rgb(prompts2, image_idx2, ncut_images) + \ | |
xy_rgb(prompts3, image_idx3, ncut_images) | |
# print(rgbs) | |
ncut_images = [np.array(image).astype(np.float32) for image in ncut_images] | |
ncut_pixels = [image.reshape(-1, 3) for image in ncut_images] | |
h, w = ncut_images[0].shape[:2] | |
ncut_pixels = torch.tensor(np.array(ncut_pixels).reshape(-1, 3)) / 255 | |
# normalized_ncut_pixels = F.normalize(ncut_pixels, p=2, dim=-1) | |
def to_mask(heatmap, threshold): | |
heatmap = 1 / (heatmap + 1e-6) | |
if heatmap.shape[0] > 10000: | |
random_idx = np.random.choice(heatmap.shape[0], 10000, replace=False) | |
vmin, vmax = heatmap[random_idx].quantile(0.01), heatmap[random_idx].quantile(0.99) | |
else: | |
vmin, vmax = heatmap.quantile(0.01), heatmap.quantile(0.99) | |
heatmap = (heatmap - vmin) / (vmax - vmin) | |
heatmap = heatmap.reshape(len(ncut_images), h, w) | |
mask = heatmap > threshold | |
return mask | |
positive_masks, negative_masks = [], [] | |
for rgb, is_positive in rgbs: | |
rgb = torch.tensor(rgb).float() / 255 | |
distance = (ncut_pixels - rgb[None]).norm(dim=-1) | |
distance = distance.squeeze(-1) | |
if is_positive: | |
positive_masks.append(to_mask(distance, distance_threshold)) | |
else: | |
negative_masks.append(to_mask(distance, negative_distance_threshold)) | |
if len(positive_masks) == 0: | |
raise gr.Error("No prompt points. Please draw some points on the image.") | |
positive_masks = torch.stack(positive_masks) | |
positive_mask = positive_masks.any(dim=0) | |
if len(negative_masks) > 0: | |
negative_masks = torch.stack(negative_masks) | |
negative_mask = negative_masks.any(dim=0) | |
positive_mask = positive_mask & ~negative_mask | |
# convert to PIL | |
mask = positive_mask.cpu().numpy() | |
mask = mask.astype(np.uint8) * 255 | |
mask = [Image.fromarray(mask[i]) for i in range(len(mask))] | |
import cv2 | |
def get_bboxes_and_clean_mask(pil_mask, min_area=500): | |
""" | |
Args: | |
- pil_mask: A Pillow image of a binary mask with 255 for the object and 0 for the background. | |
- min_area: Minimum area for a connected component to be considered valid (default 500). | |
Returns: | |
- bounding_boxes: List of bounding boxes for valid objects (x, y, width, height). | |
- cleaned_pil_mask: A Pillow image of the cleaned mask, with small components removed. | |
""" | |
# Convert the Pillow image to a NumPy array | |
mask = np.array(pil_mask) | |
# Ensure the mask is binary (0 or 255) | |
mask = np.where(mask > 127, 255, 0).astype(np.uint8) | |
# Remove small noise using morphological operations (denoising) | |
kernel = np.ones((5, 5), np.uint8) | |
cleaned_mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) | |
# Find connected components in the cleaned mask | |
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(cleaned_mask, connectivity=8) | |
# Initialize an empty mask to store the final cleaned mask | |
final_cleaned_mask = np.zeros_like(cleaned_mask) | |
# Collect bounding boxes for components that are larger than the threshold and update the cleaned mask | |
bounding_boxes = [] | |
for i in range(1, num_labels): # Skip label 0 (background) | |
x, y, w, h, area = stats[i] | |
if area >= min_area: | |
# Add the bounding box of the valid component | |
bounding_boxes.append((x, y, w, h)) | |
# Keep the valid components in the final cleaned mask | |
final_cleaned_mask[labels == i] = 255 | |
# Convert the final cleaned mask back to a Pillow image | |
cleaned_pil_mask = Image.fromarray(final_cleaned_mask) | |
return bounding_boxes, cleaned_pil_mask | |
bboxs, filtered_masks = zip(*[get_bboxes_and_clean_mask(_mask) for _mask in mask]) | |
original_images = [image[0] for image in original_images] | |
if isinstance(original_images[0], str): | |
original_images = [Image.open(image) for image in original_images] | |
# combine the masks, also draw the bounding boxes | |
combined_masks = [] | |
for i_image in range(len(mask)): | |
noisy_mask = np.array(mask[i_image].convert("RGB")) | |
bbox = bboxs[i_image] | |
clean_mask = np.array(filtered_masks[i_image].convert("RGB")) | |
combined_mask = noisy_mask * 0.4 + clean_mask | |
combined_mask = np.clip(combined_mask, 0, 255).astype(np.uint8) | |
if overlay_image: | |
combined_mask[:, :, 0] = 0 # remove red channel | |
combined_mask[:, :, 1] = 0 # remove green channel | |
_image = original_images[i_image].convert("RGB").resize((combined_mask.shape[1], combined_mask.shape[0])) | |
_image = np.array(_image) | |
combined_mask = 0.5 * combined_mask + 0.5 * _image | |
combined_mask = np.clip(combined_mask, 0, 255).astype(np.uint8) | |
for x, y, w, h in bbox: | |
cv2.rectangle(combined_mask, (x-1, y-1), (x + w+2, y + h+2), (255, 0, 0), 2) | |
combined_mask = Image.fromarray(combined_mask) | |
combined_masks.append(combined_mask) | |
def extend_the_mask(xywh, factor=1.5): | |
x, y, w, h = xywh | |
x -= w * (factor - 1) / 2 | |
y -= h * (factor - 1) / 2 | |
w *= factor | |
h *= factor | |
return x, y, w, h | |
def resize_the_mask(xywh, original_size, target_size): | |
x, y, w, h = xywh | |
x *= target_size[0] / original_size[0] | |
y *= target_size[1] / original_size[1] | |
w *= target_size[0] / original_size[0] | |
h *= target_size[1] / original_size[1] | |
x, y, w, h = int(x), int(y), int(w), int(h) | |
return x, y, w, h | |
def crop_image(image, xywh, mask_h, mask_w, factor=1.0): | |
x, y, w, h = xywh | |
x, y, w, h = resize_the_mask((x, y, w, h), (mask_h, mask_w), image.size) | |
_x, _y, _w, _h = extend_the_mask((x, y, w, h), factor=factor) | |
crop = image.crop((_x, _y, _x + _w, _y + _h)) | |
return crop | |
mask_h, mask_w = filtered_masks[0].size | |
cropped_images = [] | |
for _image, _bboxs in zip(original_images, bboxs): | |
for _bbox in _bboxs: | |
cropped_images.append(crop_image(_image, _bbox, mask_h, mask_w, factor=crop_expand)) | |
return combined_masks, cropped_images | |
run_crop_button.click(run_crop, | |
inputs=[input_gallery, output_gallery, prompt_image1, prompt_image2, prompt_image3, image1_slider, image2_slider, image3_slider, | |
crop_expand_slider, distance_threshold_slider, distance_power_slider, | |
area_threshold_slider, overlay_image_checkbox, negative_distance_threshold_slider], | |
outputs=[mask_gallery, crop_gallery]) | |
with gr.Tab('📄About'): | |
with gr.Column(): | |
gr.Markdown("**This demo is for Python package `ncut-pytorch`, please visit the [Documentation](https://ncut-pytorch.readthedocs.io/)**") | |
gr.Markdown("**All the models and functions used for this demo are in the Python package `ncut-pytorch`**") | |
gr.Markdown("---") | |
gr.Markdown("---") | |
gr.Markdown("**Normalized Cuts**, aka. spectral clustering, is a graphical method to analyze data grouping in the affinity eigenvector space. It has been widely used for unsupervised segmentation in the 2000s.") | |
gr.Markdown("*Normalized Cuts and Image Segmentation, Jianbo Shi and Jitendra Malik, 2000*") | |
gr.Markdown("---") | |
gr.Markdown("**We have improved NCut, with some advanced features:**") | |
gr.Markdown("- **Nyström** Normalized Cut, is a new approximation algorithm developed for large-scale graph cuts, a large-graph of million nodes can be processed in under 10s (cpu) or 2s (gpu).") | |
gr.Markdown("- **spectral-tSNE** visualization, a new method to visualize the high-dimensional eigenvector space with 3D RGB cube. Color is aligned across images, color infers distance in representation.") | |
gr.Markdown("*paper in prep, Yang 2024*") | |
gr.Markdown("*AlignedCut: Visual Concepts Discovery on Brain-Guided Universal Feature Space, Huzheng Yang, James Gee\*, and Jianbo Shi\*, 2024*") | |
gr.Markdown("---") | |
gr.Markdown("---") | |
gr.Markdown('<p style="text-align: center;">We thank HuggingFace for hosting this demo.</p>') | |
# unlock the hidden tab | |
with gr.Row(): | |
with gr.Column(scale=5): | |
gr.Markdown("") | |
with gr.Column(scale=5): | |
hidden_button = gr.Checkbox(label="🤗", value=False, elem_id="unlock_button", visible=True, interactive=True) | |
with gr.Column(scale=5): | |
gr.Markdown("") | |
n_smiles = gr.State(0) | |
unlock_value = 6 | |
def update_smile(n_smiles): | |
n_smiles = n_smiles + 1 | |
n_smiles = unlock_value if n_smiles > unlock_value else n_smiles | |
if n_smiles == unlock_value - 2: | |
gr.Info("click one more time to unlock", 2) | |
if n_smiles == unlock_value: | |
label = "🔓 unlocked" | |
return n_smiles, gr.update(label=label, value=True, interactive=False) | |
label = ["😊"] * n_smiles | |
label = "".join(label) | |
return n_smiles, gr.update(label=label, value=False) | |
def unlock_tabs_with_info(n_smiles): | |
if n_smiles == unlock_value: | |
gr.Info("🔓 unlocked tabs", 2) | |
return gr.update(visible=True) | |
return gr.update() | |
def unlock_tabs(n_smiles): | |
if n_smiles == unlock_value: | |
return gr.update(visible=True) | |
return gr.update() | |
hidden_button.change(update_smile, [n_smiles], [n_smiles, hidden_button]) | |
hidden_button.change(unlock_tabs_with_info, n_smiles, tab_alignedcut_advanced) | |
hidden_button.change(unlock_tabs, n_smiles, tab_model_aligned_advanced) | |
hidden_button.change(unlock_tabs, n_smiles, tab_recursivecut_advanced) | |
hidden_button.change(unlock_tabs, n_smiles, tab_compare_models_advanced) | |
hidden_button.change(unlock_tabs, n_smiles, tab_directed_ncut) | |
# with gr.Row(): | |
# with gr.Column(): | |
# gr.Markdown("##### This demo is for `ncut-pytorch`, [Documentation](https://ncut-pytorch.readthedocs.io/) ") | |
# with gr.Column(): | |
# gr.Markdown("###### Running out of GPU Quota? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn") | |
with gr.Row(): | |
gr.Markdown("**This demo is for Python package `ncut-pytorch`, [Documentation](https://ncut-pytorch.readthedocs.io/)**") | |
# for local development | |
if os.path.exists("/hf_token.txt"): | |
os.environ["HF_ACCESS_TOKEN"] = open("/hf_token.txt").read().strip() | |
if DOWNLOAD_ALL_MODELS_DATASETS: | |
from ncut_pytorch.backbone import download_all_models | |
# t1 = threading.Thread(target=download_all_models).start() | |
# t1.join() | |
# t3 = threading.Thread(target=download_all_datasets).start() | |
# t3.join() | |
download_all_models() | |
download_all_datasets() | |
from ncut_pytorch.backbone_text import download_all_models | |
# t2 = threading.Thread(target=download_all_models).start() | |
# t2.join() | |
download_all_models() | |
demo.launch(share=True) | |
# # %% | |
# # debug | |
# # change working directory to "/" | |
# os.chdir("/") | |
# images = [(Image.open(image), None) for image in default_images] | |
# ret = run_fn(images, num_eig=30) | |
# # %% | |
# %% | |