File size: 14,728 Bytes
2b98806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b0549b
 
2b98806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b0549b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
from typing import Optional, Tuple
from einops import rearrange
import torch
from PIL import Image
import torchvision.transforms as transforms
from torch import nn
import numpy as np

import gradio as gr


class SAM(torch.nn.Module):
    def __init__(self, checkpoint="/data/sam_model/sam_vit_b_01ec64.pth", **kwargs):
        super().__init__(**kwargs)
        from segment_anything import sam_model_registry, SamPredictor
        from segment_anything.modeling.sam import Sam

        sam: Sam = sam_model_registry["vit_b"](checkpoint=checkpoint)

        from segment_anything.modeling.image_encoder import (
            window_partition,
            window_unpartition,
        )

        def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
            shortcut = x
            x = self.norm1(x)
            # Window partition
            if self.window_size > 0:
                H, W = x.shape[1], x.shape[2]
                x, pad_hw = window_partition(x, self.window_size)

            x = self.attn(x)
            # Reverse window partition
            if self.window_size > 0:
                x = window_unpartition(x, self.window_size, pad_hw, (H, W))
            self.attn_output = x.clone()

            x = shortcut + x
            mlp_outout = self.mlp(self.norm2(x))
            self.mlp_output = mlp_outout.clone()
            x = x + mlp_outout
            self.block_output = x.clone()

            return x

        setattr(sam.image_encoder.blocks[0].__class__, "forward", new_block_forward)

        self.image_encoder = sam.image_encoder
        self.image_encoder.eval()
        # self.image_encoder = self.image_encoder.cuda()

    @torch.no_grad()
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        with torch.no_grad():
            x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
        out = self.image_encoder(x)

        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for i, blk in enumerate(self.image_encoder.blocks):
            attn_outputs.append(blk.attn_output)
            mlp_outputs.append(blk.mlp_output)
            block_outputs.append(blk.block_output)
        attn_outputs = torch.stack(attn_outputs)
        mlp_outputs = torch.stack(mlp_outputs)
        block_outputs = torch.stack(block_outputs)
        return attn_outputs, mlp_outputs, block_outputs


def image_sam_feature(
    images,
    resolution=(1024, 1024),
    node_type="block",
    layer=-1,
):

    transform = transforms.Compose(
        [
            transforms.Resize(resolution),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    
    checkpoint = "sam_vit_b_01ec64.pth"
    if not os.path.exists(checkpoint):
        checkpoint_url = 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth'
        import requests
        r = requests.get(checkpoint_url)
        with open(checkpoint, 'wb') as f:
            f.write(r.content)

    feat_extractor = SAM(checkpoint=checkpoint)

    # attn_outputs, mlp_outputs, block_outputs = [], [], []
    outputs = []
    for i, image in enumerate(images):
        torch_image = transform(image)
        attn_output, mlp_output, block_output = feat_extractor(
            # torch_image.unsqueeze(0).cuda()
            torch_image.unsqueeze(0)
        )
        out_dict = {
            "attn": attn_output,
            "mlp": mlp_output,
            "block": block_output,
        }
        out = out_dict[node_type]
        out = out[layer]
        outputs.append(out.cpu())
    outputs = torch.cat(outputs, dim=0)
    return outputs


class DiNOv2(torch.nn.Module):
    def __init__(self, ver="dinov2_vitb14_reg"):
        super().__init__()
        self.dinov2 = torch.hub.load("facebookresearch/dinov2", ver)
        self.dinov2.requires_grad_(False)
        self.dinov2.eval()
        # self.dinov2 = self.dinov2.cuda()

        def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
            def attn_residual_func(x):
                return self.ls1(self.attn(self.norm1(x)))

            def ffn_residual_func(x):
                return self.ls2(self.mlp(self.norm2(x)))

            attn_output = attn_residual_func(x)
            self.attn_output = attn_output.clone()
            x = x + attn_output
            mlp_output = ffn_residual_func(x)
            self.mlp_output = mlp_output.clone()
            x = x + mlp_output
            block_output = x
            self.block_output = block_output.clone()
            return x

        setattr(self.dinov2.blocks[0].__class__, "forward", new_block_forward)

    @torch.no_grad()
    def forward(self, x):

        out = self.dinov2(x)

        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for i, blk in enumerate(self.dinov2.blocks):
            attn_outputs.append(blk.attn_output)
            mlp_outputs.append(blk.mlp_output)
            block_outputs.append(blk.block_output)

        attn_outputs = torch.stack(attn_outputs)
        mlp_outputs = torch.stack(mlp_outputs)
        block_outputs = torch.stack(block_outputs)
        return attn_outputs, mlp_outputs, block_outputs


def image_dino_feature(images, resolution=(448, 448), node_type="block", layer=-1):

    transform = transforms.Compose(
        [
            transforms.Resize(resolution),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )

    feat_extractor = DiNOv2()

    outputs = []
    for i, image in enumerate(images):
        torch_image = transform(image)
        attn_output, mlp_output, block_output = feat_extractor(
            # torch_image.unsqueeze(0).cuda()
            torch_image.unsqueeze(0)
        )
        out_dict = {
            "attn": attn_output,
            "mlp": mlp_output,
            "block": block_output,
        }
        out = out_dict[node_type]
        out = out[layer]
        outputs.append(out.cpu())
    outputs = torch.cat(outputs, dim=0)
    outputs = rearrange(outputs[:, 5:, :], "b (h w) c -> b h w c", h=32, w=32)
    return outputs


class CLIP(torch.nn.Module):
    def __init__(self):
        super().__init__()

        from transformers import CLIPProcessor, CLIPModel

        model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
        # processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
        self.model = model.eval()
        # self.model = self.model.cuda()
        
        def new_forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: torch.Tensor,
            causal_attention_mask: torch.Tensor,
            output_attentions: Optional[bool] = False,
        ) -> Tuple[torch.FloatTensor]:

            residual = hidden_states

            hidden_states = self.layer_norm1(hidden_states)
            hidden_states, attn_weights = self.self_attn(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                causal_attention_mask=causal_attention_mask,
                output_attentions=output_attentions,
            )
            self.attn_output = hidden_states.clone()
            hidden_states = residual + hidden_states

            residual = hidden_states
            hidden_states = self.layer_norm2(hidden_states)
            hidden_states = self.mlp(hidden_states)
            self.mlp_output = hidden_states.clone()
            
            hidden_states = residual + hidden_states

            outputs = (hidden_states,)

            if output_attentions:
                outputs += (attn_weights,)

            self.block_output = hidden_states.clone()
            return outputs
        
        setattr(self.model.vision_model.encoder.layers[0].__class__, "forward", new_forward)

    @torch.no_grad()
    def forward(self, x): 

        out = self.model.vision_model(x)

        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for i, blk in enumerate(self.model.vision_model.encoder.layers):
            attn_outputs.append(blk.attn_output)
            mlp_outputs.append(blk.mlp_output)
            block_outputs.append(blk.block_output)

        attn_outputs = torch.stack(attn_outputs)
        mlp_outputs = torch.stack(mlp_outputs)
        block_outputs = torch.stack(block_outputs)
        return attn_outputs, mlp_outputs, block_outputs


def image_clip_feature(
    images, resolution=(224, 224), node_type="block", layer=-1
):
    if isinstance(images, list):
        assert isinstance(images[0], Image.Image), "Input must be a list of PIL images."
    else:
        assert isinstance(images, Image.Image), "Input must be a PIL image."
        images = [images]

    transform = transforms.Compose(
        [
            transforms.Resize(resolution),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )

    feat_extractor = CLIP()

    outputs = []
    for i, image in enumerate(images):
        torch_image = transform(image)
        attn_output, mlp_output, block_output = feat_extractor(
            # torch_image.unsqueeze(0).cuda()
            torch_image.unsqueeze(0)
        )
        out_dict = {
            "attn": attn_output,
            "mlp": mlp_output,
            "block": block_output,
        }
        out = out_dict[node_type]
        out = out[layer]
        outputs.append(out.cpu())
    outputs = torch.cat(outputs, dim=0)
    return outputs



def extract_features(images, model_name="sam", node_type="block", layer=-1):
    if model_name == "SAM(sam_vit_b)":
        return image_sam_feature(images, node_type=node_type, layer=layer)
    elif model_name == "DiNO(dinov2_vitb14_reg)":
        return image_dino_feature(images, node_type=node_type, layer=layer)
    elif model_name == "CLIP(openai/clip-vit-base-patch16)":
        return image_clip_feature(images, node_type=node_type, layer=layer)
    else:
        raise ValueError(f"Model {model_name} not supported.")


def compute_ncut(
    features,
    num_eig=100,
    num_sample_ncut=10000,
    affinity_focal_gamma=0.3,
    knn_ncut=10,
    knn_tsne=10,
    num_sample_tsne=1000,
    perplexity=500,
):
    from ncut_pytorch import NCUT, rgb_from_tsne_3d

    eigvecs, eigvals = NCUT(
        num_eig=num_eig,
        num_sample=num_sample_ncut,
        # device="cuda:0",
        affinity_focal_gamma=affinity_focal_gamma,
        knn=knn_ncut,
    ).fit_transform(features.reshape(-1, features.shape[-1]))
    X_3d, rgb = rgb_from_tsne_3d(
        eigvecs,
        num_sample=num_sample_tsne,
        perplexity=perplexity,
        knn=knn_tsne,
    )
    rgb = rgb.reshape(features.shape[:3] + (3,))
    return rgb


def dont_use_too_much_green(image_rgb):
    # make sure the foval 40% of the image is red leading
    x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7)
    y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7)
    sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2))
    sorted_indices = sum_values.argsort(descending=True)
    image_rgb = image_rgb[:, :, :, sorted_indices]
    return image_rgb


def to_pil_images(images):
    return [
        Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)).resize((256, 256), Image.NEAREST)
        for image in images
    ]


def main_fn(
    images,
    model_name="SAM(sam_vit_b)",
    node_type="block",
    layer=-1,
    num_eig=100,
    affinity_focal_gamma=0.3,
    num_sample_ncut=10000,
    knn_ncut=10,
    num_sample_tsne=1000,
    knn_tsne=10,
    perplexity=500,
):
    if perplexity >= num_sample_tsne:
        # raise gr.Error("Perplexity must be less than the number of samples for t-SNE.")
        gr.Warning("Perplexity must be less than the number of samples for t-SNE.\n" f"Setting perplexity to {num_sample_tsne-1}.")
        perplexity = num_sample_tsne - 1
    
    images = [image[0] for image in images]
    features = extract_features(
        images, model_name=model_name, node_type=node_type, layer=layer
    )
    rgb = compute_ncut(
        features,
        num_eig=num_eig,
        num_sample_ncut=num_sample_ncut,
        affinity_focal_gamma=affinity_focal_gamma,
        knn_ncut=knn_ncut,
        knn_tsne=knn_tsne,
        num_sample_tsne=num_sample_tsne,
        perplexity=perplexity,
    )
    rgb = dont_use_too_much_green(rgb)
    return to_pil_images(rgb)

default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_4.jpg', './images/image_5.jpg']
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_4.jpg', './images/ncut_5.jpg']

demo = gr.Interface(
    main_fn,
    [
        gr.Gallery(value=default_images, label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil"),
        gr.Dropdown(["SAM(sam_vit_b)", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16"], label="Model", value="SAM(sam_vit_b)", elem_id="model_name"),
        gr.Dropdown(["attn", "mlp", "block"], label="Node type", value="block", elem_id="node_type", info="attn: attention output, mlp: mlp output, block: sum of residual stream"),
        gr.Slider(0, 11, step=1, label="Layer", value=11, elem_id="layer", info="which layer of the image backbone features"),
        gr.Slider(1, 1000, step=1, label="Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more object parts, decrease for whole object'),
        gr.Slider(0.01, 1, step=0.01, label="Affinity focal gamma", value=0.3, elem_id="affinity_focal_gamma", info="decrease for more aggressive cleaning on the affinity matrix"),
    ],
    gr.Gallery(value=default_outputs, label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto"),
    additional_inputs=[
        gr.Slider(100, 30000, step=100, label="num_sample (NCUT)", value=10000, elem_id="num_sample_ncut", info="for Nyström approximation"),
        gr.Slider(1, 100, step=1, label="KNN (NCUT)", value=10, elem_id="knn_ncut", info="for Nyström approximation"),
        gr.Slider(100, 10000, step=100, label="num_sample (t-SNE)", value=1000, elem_id="num_sample_tsne", info="for Nyström approximation. Adding will slow down t-SNE quite a lot"),
        gr.Slider(1, 100, step=1, label="KNN (t-SNE)", value=10, elem_id="knn_tsne", info="for Nyström approximation"),
        gr.Slider(10, 1000, step=10, label="Perplexity (t-SNE)", value=500, elem_id="perplexity", info="for t-SNE"),
        
    ]
)

demo.launch()