Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,728 Bytes
2b98806 9b0549b 2b98806 9b0549b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
from typing import Optional, Tuple
from einops import rearrange
import torch
from PIL import Image
import torchvision.transforms as transforms
from torch import nn
import numpy as np
import gradio as gr
class SAM(torch.nn.Module):
def __init__(self, checkpoint="/data/sam_model/sam_vit_b_01ec64.pth", **kwargs):
super().__init__(**kwargs)
from segment_anything import sam_model_registry, SamPredictor
from segment_anything.modeling.sam import Sam
sam: Sam = sam_model_registry["vit_b"](checkpoint=checkpoint)
from segment_anything.modeling.image_encoder import (
window_partition,
window_unpartition,
)
def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x
x = self.norm1(x)
# Window partition
if self.window_size > 0:
H, W = x.shape[1], x.shape[2]
x, pad_hw = window_partition(x, self.window_size)
x = self.attn(x)
# Reverse window partition
if self.window_size > 0:
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
self.attn_output = x.clone()
x = shortcut + x
mlp_outout = self.mlp(self.norm2(x))
self.mlp_output = mlp_outout.clone()
x = x + mlp_outout
self.block_output = x.clone()
return x
setattr(sam.image_encoder.blocks[0].__class__, "forward", new_block_forward)
self.image_encoder = sam.image_encoder
self.image_encoder.eval()
# self.image_encoder = self.image_encoder.cuda()
@torch.no_grad()
def forward(self, x: torch.Tensor) -> torch.Tensor:
with torch.no_grad():
x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
out = self.image_encoder(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i, blk in enumerate(self.image_encoder.blocks):
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
attn_outputs = torch.stack(attn_outputs)
mlp_outputs = torch.stack(mlp_outputs)
block_outputs = torch.stack(block_outputs)
return attn_outputs, mlp_outputs, block_outputs
def image_sam_feature(
images,
resolution=(1024, 1024),
node_type="block",
layer=-1,
):
transform = transforms.Compose(
[
transforms.Resize(resolution),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
checkpoint = "sam_vit_b_01ec64.pth"
if not os.path.exists(checkpoint):
checkpoint_url = 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth'
import requests
r = requests.get(checkpoint_url)
with open(checkpoint, 'wb') as f:
f.write(r.content)
feat_extractor = SAM(checkpoint=checkpoint)
# attn_outputs, mlp_outputs, block_outputs = [], [], []
outputs = []
for i, image in enumerate(images):
torch_image = transform(image)
attn_output, mlp_output, block_output = feat_extractor(
# torch_image.unsqueeze(0).cuda()
torch_image.unsqueeze(0)
)
out_dict = {
"attn": attn_output,
"mlp": mlp_output,
"block": block_output,
}
out = out_dict[node_type]
out = out[layer]
outputs.append(out.cpu())
outputs = torch.cat(outputs, dim=0)
return outputs
class DiNOv2(torch.nn.Module):
def __init__(self, ver="dinov2_vitb14_reg"):
super().__init__()
self.dinov2 = torch.hub.load("facebookresearch/dinov2", ver)
self.dinov2.requires_grad_(False)
self.dinov2.eval()
# self.dinov2 = self.dinov2.cuda()
def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
def attn_residual_func(x):
return self.ls1(self.attn(self.norm1(x)))
def ffn_residual_func(x):
return self.ls2(self.mlp(self.norm2(x)))
attn_output = attn_residual_func(x)
self.attn_output = attn_output.clone()
x = x + attn_output
mlp_output = ffn_residual_func(x)
self.mlp_output = mlp_output.clone()
x = x + mlp_output
block_output = x
self.block_output = block_output.clone()
return x
setattr(self.dinov2.blocks[0].__class__, "forward", new_block_forward)
@torch.no_grad()
def forward(self, x):
out = self.dinov2(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i, blk in enumerate(self.dinov2.blocks):
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
attn_outputs = torch.stack(attn_outputs)
mlp_outputs = torch.stack(mlp_outputs)
block_outputs = torch.stack(block_outputs)
return attn_outputs, mlp_outputs, block_outputs
def image_dino_feature(images, resolution=(448, 448), node_type="block", layer=-1):
transform = transforms.Compose(
[
transforms.Resize(resolution),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
feat_extractor = DiNOv2()
outputs = []
for i, image in enumerate(images):
torch_image = transform(image)
attn_output, mlp_output, block_output = feat_extractor(
# torch_image.unsqueeze(0).cuda()
torch_image.unsqueeze(0)
)
out_dict = {
"attn": attn_output,
"mlp": mlp_output,
"block": block_output,
}
out = out_dict[node_type]
out = out[layer]
outputs.append(out.cpu())
outputs = torch.cat(outputs, dim=0)
outputs = rearrange(outputs[:, 5:, :], "b (h w) c -> b h w c", h=32, w=32)
return outputs
class CLIP(torch.nn.Module):
def __init__(self):
super().__init__()
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
# processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
self.model = model.eval()
# self.model = self.model.cuda()
def new_forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
self.attn_output = hidden_states.clone()
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
self.mlp_output = hidden_states.clone()
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
self.block_output = hidden_states.clone()
return outputs
setattr(self.model.vision_model.encoder.layers[0].__class__, "forward", new_forward)
@torch.no_grad()
def forward(self, x):
out = self.model.vision_model(x)
attn_outputs, mlp_outputs, block_outputs = [], [], []
for i, blk in enumerate(self.model.vision_model.encoder.layers):
attn_outputs.append(blk.attn_output)
mlp_outputs.append(blk.mlp_output)
block_outputs.append(blk.block_output)
attn_outputs = torch.stack(attn_outputs)
mlp_outputs = torch.stack(mlp_outputs)
block_outputs = torch.stack(block_outputs)
return attn_outputs, mlp_outputs, block_outputs
def image_clip_feature(
images, resolution=(224, 224), node_type="block", layer=-1
):
if isinstance(images, list):
assert isinstance(images[0], Image.Image), "Input must be a list of PIL images."
else:
assert isinstance(images, Image.Image), "Input must be a PIL image."
images = [images]
transform = transforms.Compose(
[
transforms.Resize(resolution),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
feat_extractor = CLIP()
outputs = []
for i, image in enumerate(images):
torch_image = transform(image)
attn_output, mlp_output, block_output = feat_extractor(
# torch_image.unsqueeze(0).cuda()
torch_image.unsqueeze(0)
)
out_dict = {
"attn": attn_output,
"mlp": mlp_output,
"block": block_output,
}
out = out_dict[node_type]
out = out[layer]
outputs.append(out.cpu())
outputs = torch.cat(outputs, dim=0)
return outputs
def extract_features(images, model_name="sam", node_type="block", layer=-1):
if model_name == "SAM(sam_vit_b)":
return image_sam_feature(images, node_type=node_type, layer=layer)
elif model_name == "DiNO(dinov2_vitb14_reg)":
return image_dino_feature(images, node_type=node_type, layer=layer)
elif model_name == "CLIP(openai/clip-vit-base-patch16)":
return image_clip_feature(images, node_type=node_type, layer=layer)
else:
raise ValueError(f"Model {model_name} not supported.")
def compute_ncut(
features,
num_eig=100,
num_sample_ncut=10000,
affinity_focal_gamma=0.3,
knn_ncut=10,
knn_tsne=10,
num_sample_tsne=1000,
perplexity=500,
):
from ncut_pytorch import NCUT, rgb_from_tsne_3d
eigvecs, eigvals = NCUT(
num_eig=num_eig,
num_sample=num_sample_ncut,
# device="cuda:0",
affinity_focal_gamma=affinity_focal_gamma,
knn=knn_ncut,
).fit_transform(features.reshape(-1, features.shape[-1]))
X_3d, rgb = rgb_from_tsne_3d(
eigvecs,
num_sample=num_sample_tsne,
perplexity=perplexity,
knn=knn_tsne,
)
rgb = rgb.reshape(features.shape[:3] + (3,))
return rgb
def dont_use_too_much_green(image_rgb):
# make sure the foval 40% of the image is red leading
x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7)
y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7)
sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2))
sorted_indices = sum_values.argsort(descending=True)
image_rgb = image_rgb[:, :, :, sorted_indices]
return image_rgb
def to_pil_images(images):
return [
Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)).resize((256, 256), Image.NEAREST)
for image in images
]
def main_fn(
images,
model_name="SAM(sam_vit_b)",
node_type="block",
layer=-1,
num_eig=100,
affinity_focal_gamma=0.3,
num_sample_ncut=10000,
knn_ncut=10,
num_sample_tsne=1000,
knn_tsne=10,
perplexity=500,
):
if perplexity >= num_sample_tsne:
# raise gr.Error("Perplexity must be less than the number of samples for t-SNE.")
gr.Warning("Perplexity must be less than the number of samples for t-SNE.\n" f"Setting perplexity to {num_sample_tsne-1}.")
perplexity = num_sample_tsne - 1
images = [image[0] for image in images]
features = extract_features(
images, model_name=model_name, node_type=node_type, layer=layer
)
rgb = compute_ncut(
features,
num_eig=num_eig,
num_sample_ncut=num_sample_ncut,
affinity_focal_gamma=affinity_focal_gamma,
knn_ncut=knn_ncut,
knn_tsne=knn_tsne,
num_sample_tsne=num_sample_tsne,
perplexity=perplexity,
)
rgb = dont_use_too_much_green(rgb)
return to_pil_images(rgb)
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_4.jpg', './images/image_5.jpg']
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_4.jpg', './images/ncut_5.jpg']
demo = gr.Interface(
main_fn,
[
gr.Gallery(value=default_images, label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil"),
gr.Dropdown(["SAM(sam_vit_b)", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16"], label="Model", value="SAM(sam_vit_b)", elem_id="model_name"),
gr.Dropdown(["attn", "mlp", "block"], label="Node type", value="block", elem_id="node_type", info="attn: attention output, mlp: mlp output, block: sum of residual stream"),
gr.Slider(0, 11, step=1, label="Layer", value=11, elem_id="layer", info="which layer of the image backbone features"),
gr.Slider(1, 1000, step=1, label="Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more object parts, decrease for whole object'),
gr.Slider(0.01, 1, step=0.01, label="Affinity focal gamma", value=0.3, elem_id="affinity_focal_gamma", info="decrease for more aggressive cleaning on the affinity matrix"),
],
gr.Gallery(value=default_outputs, label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto"),
additional_inputs=[
gr.Slider(100, 30000, step=100, label="num_sample (NCUT)", value=10000, elem_id="num_sample_ncut", info="for Nyström approximation"),
gr.Slider(1, 100, step=1, label="KNN (NCUT)", value=10, elem_id="knn_ncut", info="for Nyström approximation"),
gr.Slider(100, 10000, step=100, label="num_sample (t-SNE)", value=1000, elem_id="num_sample_tsne", info="for Nyström approximation. Adding will slow down t-SNE quite a lot"),
gr.Slider(1, 100, step=1, label="KNN (t-SNE)", value=10, elem_id="knn_tsne", info="for Nyström approximation"),
gr.Slider(10, 1000, step=10, label="Perplexity (t-SNE)", value=500, elem_id="perplexity", info="for t-SNE"),
]
)
demo.launch()
|