zenafey commited on
Commit
e82d5e9
1 Parent(s): 9fd1039

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +148 -147
app.py CHANGED
@@ -1,147 +1,148 @@
1
- import gradio as gr
2
- import numpy as np
3
- import os
4
- import random
5
- import requests
6
- from PIL import Image
7
- from io import BytesIO
8
-
9
- MAX_SEED = np.iinfo(np.int32).max
10
- MAX_IMAGE_SIZE = 2048
11
-
12
- class APIClient:
13
- def __init__(self, api_key=os.getenv("API_KEY"), base_url="inference.prodia.com"):
14
- self.headers = {
15
- "Content-Type": "application/json",
16
- "Accept": "image/jpeg",
17
- "Authorization": f"Bearer {api_key}"
18
- }
19
- self.base_url = f"https://{base_url}"
20
-
21
- def _post(self, url, json=None):
22
- r = requests.post(url, headers=self.headers, json=json)
23
- r.raise_for_status()
24
-
25
- return Image.open(BytesIO(r.content)).convert("RGBA")
26
-
27
- def job(self, config):
28
- body = {"type": "inference.flux.dev.txt2img.v1", "config": config}
29
- return self._post(f"{self.base_url}/v2/job", json=body)
30
-
31
-
32
- def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
33
- if randomize_seed:
34
- seed = random.randint(0, MAX_SEED)
35
- image = generative_api.job({
36
- "prompt": prompt,
37
- "width": width,
38
- "height": height,
39
- "seed": seed,
40
- "num_inference_steps": num_inference_steps,
41
- "guidance_scale": guidance_scale
42
- })
43
- return image, seed
44
-
45
- generative_api = APIClient()
46
-
47
- examples = [
48
- "a tiny astronaut hatching from an egg on the moon",
49
- "a cat holding a sign that says hello world",
50
- "an anime illustration of a wiener schnitzel",
51
- ]
52
-
53
- css="""
54
- #col-container {
55
- margin: 0 auto;
56
- max-width: 520px;
57
- }
58
- """
59
-
60
- with gr.Blocks(css=css) as demo:
61
-
62
- with gr.Column(elem_id="col-container"):
63
- gr.Markdown(f"""# FLUX.1 [dev]
64
- 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
65
- [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
66
- """)
67
-
68
- with gr.Row():
69
-
70
- prompt = gr.Text(
71
- label="Prompt",
72
- show_label=False,
73
- max_lines=1,
74
- placeholder="Enter your prompt",
75
- container=False,
76
- )
77
-
78
- run_button = gr.Button("Run", scale=0)
79
-
80
- result = gr.Image(label="Result", show_label=False)
81
-
82
- with gr.Accordion("Advanced Settings", open=False):
83
-
84
- seed = gr.Slider(
85
- label="Seed",
86
- minimum=0,
87
- maximum=MAX_SEED,
88
- step=1,
89
- value=0,
90
- )
91
-
92
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
93
-
94
- with gr.Row():
95
-
96
- width = gr.Slider(
97
- label="Width",
98
- minimum=256,
99
- maximum=MAX_IMAGE_SIZE,
100
- step=32,
101
- value=1024,
102
- interactive=False
103
- )
104
-
105
- height = gr.Slider(
106
- label="Height",
107
- minimum=256,
108
- maximum=MAX_IMAGE_SIZE,
109
- step=32,
110
- value=1024,
111
- interactive=False
112
- )
113
-
114
- with gr.Row():
115
-
116
- guidance_scale = gr.Slider(
117
- label="Guidance Scale",
118
- minimum=1,
119
- maximum=15,
120
- step=0.1,
121
- value=3.5,
122
- )
123
-
124
- num_inference_steps = gr.Slider(
125
- label="Number of inference steps",
126
- minimum=1,
127
- maximum=50,
128
- step=1,
129
- value=28,
130
- )
131
-
132
- gr.Examples(
133
- examples = examples,
134
- fn = infer,
135
- inputs = [prompt],
136
- outputs = [result, seed],
137
- cache_examples="lazy"
138
- )
139
-
140
- gr.on(
141
- triggers=[run_button.click, prompt.submit],
142
- fn = infer,
143
- inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
144
- outputs = [result, seed]
145
- )
146
-
147
- demo.launch()
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import os
4
+ import random
5
+ import requests
6
+ from PIL import Image
7
+ from io import BytesIO
8
+
9
+ MAX_SEED = np.iinfo(np.int32).max
10
+ MAX_IMAGE_SIZE = 2048
11
+
12
+ class APIClient:
13
+ def __init__(self, api_key=os.getenv("API_KEY"), base_url="inference.prodia.com"):
14
+ self.headers = {
15
+ "Content-Type": "application/json",
16
+ "Accept": "image/jpeg",
17
+ "Authorization": f"Bearer {api_key}"
18
+ }
19
+ self.base_url = f"https://{base_url}"
20
+
21
+ def _post(self, url, json=None):
22
+ r = requests.post(url, headers=self.headers, json=json)
23
+ r.raise_for_status()
24
+
25
+ return Image.open(BytesIO(r.content)).convert("RGBA")
26
+
27
+ def job(self, config):
28
+ body = {"type": "inference.flux.dev.txt2img.v1", "config": config}
29
+ return self._post(f"{self.base_url}/v2/job", json=body)
30
+
31
+
32
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
33
+ if randomize_seed:
34
+ seed = random.randint(0, MAX_SEED)
35
+ image = generative_api.job({
36
+ "prompt": prompt,
37
+ "width": width,
38
+ "height": height,
39
+ "seed": seed,
40
+ "num_inference_steps": num_inference_steps,
41
+ "guidance_scale": guidance_scale
42
+ })
43
+ return image, seed
44
+
45
+ generative_api = APIClient()
46
+
47
+ examples = [
48
+ "a tiny astronaut hatching from an egg on the moon",
49
+ "a cat holding a sign that says hello world",
50
+ "an anime illustration of a wiener schnitzel",
51
+ ]
52
+
53
+ css="""
54
+ #col-container {
55
+ margin: 0 auto;
56
+ max-width: 520px;
57
+ }
58
+ """
59
+
60
+ with gr.Blocks(css=css) as demo:
61
+
62
+ with gr.Column(elem_id="col-container"):
63
+ gr.Markdown(f"""# FLUX.1 [dev]
64
+ 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
65
+ [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
66
+ """)
67
+
68
+ with gr.Row():
69
+
70
+ prompt = gr.Text(
71
+ label="Prompt",
72
+ show_label=False,
73
+ max_lines=1,
74
+ placeholder="Enter your prompt",
75
+ container=False,
76
+ )
77
+
78
+ run_button = gr.Button("Run", scale=0)
79
+
80
+ result = gr.Image(label="Result", show_label=False)
81
+
82
+ with gr.Accordion("Advanced Settings", open=False):
83
+
84
+ seed = gr.Slider(
85
+ label="Seed",
86
+ minimum=0,
87
+ maximum=MAX_SEED,
88
+ step=1,
89
+ value=0,
90
+ )
91
+
92
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
93
+
94
+ with gr.Row():
95
+
96
+ width = gr.Slider(
97
+ label="Width",
98
+ minimum=256,
99
+ maximum=MAX_IMAGE_SIZE,
100
+ step=32,
101
+ value=1024,
102
+ interactive=False
103
+ )
104
+
105
+ height = gr.Slider(
106
+ label="Height",
107
+ minimum=256,
108
+ maximum=MAX_IMAGE_SIZE,
109
+ step=32,
110
+ value=1024,
111
+ interactive=False
112
+ )
113
+
114
+ with gr.Row():
115
+
116
+ guidance_scale = gr.Slider(
117
+ label="Guidance Scale",
118
+ minimum=1,
119
+ maximum=15,
120
+ step=0.1,
121
+ value=3.5,
122
+ )
123
+
124
+ num_inference_steps = gr.Slider(
125
+ label="Number of inference steps",
126
+ minimum=1,
127
+ maximum=50,
128
+ step=1,
129
+ value=28,
130
+ )
131
+
132
+ gr.Examples(
133
+ examples = examples,
134
+ fn = infer,
135
+ inputs = [prompt],
136
+ outputs = [result, seed],
137
+ cache_examples="lazy"
138
+ )
139
+
140
+ gr.on(
141
+ triggers=[run_button.click, prompt.submit],
142
+ fn = infer,
143
+ inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
144
+ outputs = [result, seed]
145
+ )
146
+
147
+
148
+ demo.queue(default_concurrency_limit=1, max_size=5, api_open=False).launch(max_threads=256, show_api=False)