|
import gradio as gr |
|
import numpy as np |
|
import os |
|
import random |
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 2048 |
|
|
|
class APIClient: |
|
def __init__(self, api_key=os.getenv("API_KEY"), base_url="inference.prodia.com"): |
|
self.headers = { |
|
"Content-Type": "application/json", |
|
"Accept": "image/jpeg", |
|
"Authorization": f"Bearer {api_key}" |
|
} |
|
self.base_url = f"https://{base_url}" |
|
|
|
def _post(self, url, json=None): |
|
r = requests.post(url, headers=self.headers, json=json) |
|
r.raise_for_status() |
|
|
|
return Image.open(BytesIO(r.content)).convert("RGB") |
|
|
|
def job(self, config): |
|
body = {"type": "inference.flux.dev.txt2img.v1", "config": config} |
|
|
|
try: |
|
return self._post(f"{self.base_url}/v2/job", json=body) |
|
except Exception as e: |
|
raise gr.Error(f"Job failed: {e}") |
|
|
|
|
|
def infer(prompt, seed=42, randomize_seed=False, resolution="1024x1024", guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
width, height = resolution.split("x") |
|
|
|
image = generative_api.job({ |
|
"prompt": prompt, |
|
"width": int(width), |
|
"height": int(height), |
|
"seed": seed, |
|
"steps": num_inference_steps, |
|
"guidance_scale": guidance_scale |
|
}) |
|
return image, seed |
|
|
|
generative_api = APIClient() |
|
|
|
with open("header.md", "r") as file: |
|
header = file.read() |
|
|
|
examples = [ |
|
"a tiny astronaut hatching from an egg on the moon", |
|
"a cat holding a sign that says hello world", |
|
"an anime illustration of a wiener schnitzel", |
|
] |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
.image-container img { |
|
max-width: 512px; |
|
max-height: 512px; |
|
margin: 0 auto; |
|
border-radius: 0px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(header) |
|
with gr.Row(): |
|
|
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt" |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False, format="jpeg") |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
|
|
resolution = gr.Dropdown( |
|
label="Resolution", |
|
value="1024x1024", |
|
choices=[ |
|
"1024x1024", |
|
"1024x576", |
|
"576x1024" |
|
] |
|
) |
|
|
|
with gr.Row(): |
|
|
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=1, |
|
maximum=15, |
|
step=0.1, |
|
value=3.5, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=28, |
|
) |
|
|
|
gr.Examples( |
|
examples = examples, |
|
fn = infer, |
|
inputs = [prompt], |
|
outputs = [result, seed], |
|
cache_examples="lazy" |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn = infer, |
|
inputs = [prompt, seed, randomize_seed, resolution, guidance_scale, num_inference_steps], |
|
outputs = [result, seed] |
|
) |
|
|
|
|
|
demo.queue(default_concurrency_limit=10, max_size=12, api_open=False).launch(max_threads=32, show_api=False) |