Spaces:
Build error
Build error
#!/usr/bin/env python | |
# -*- encoding: utf-8 -*- | |
""" | |
@Author : Peike Li | |
@Contact : [email protected] | |
@File : evaluate.py | |
@Time : 8/4/19 3:36 PM | |
@Desc : | |
@License : This source code is licensed under the license found in the | |
LICENSE file in the root directory of this source tree. | |
""" | |
import os | |
import argparse | |
import numpy as np | |
import torch | |
from torch.utils import data | |
from tqdm import tqdm | |
from PIL import Image as PILImage | |
import torchvision.transforms as transforms | |
import torch.backends.cudnn as cudnn | |
import networks | |
from datasets.datasets import LIPDataValSet | |
from utils.miou import compute_mean_ioU | |
from utils.transforms import BGR2RGB_transform | |
from utils.transforms import transform_parsing | |
def get_arguments(): | |
"""Parse all the arguments provided from the CLI. | |
Returns: | |
A list of parsed arguments. | |
""" | |
parser = argparse.ArgumentParser(description="Self Correction for Human Parsing") | |
# Network Structure | |
parser.add_argument("--arch", type=str, default='resnet101') | |
# Data Preference | |
parser.add_argument("--data-dir", type=str, default='./data/LIP') | |
parser.add_argument("--batch-size", type=int, default=1) | |
parser.add_argument("--input-size", type=str, default='473,473') | |
parser.add_argument("--num-classes", type=int, default=20) | |
parser.add_argument("--ignore-label", type=int, default=255) | |
parser.add_argument("--random-mirror", action="store_true") | |
parser.add_argument("--random-scale", action="store_true") | |
# Evaluation Preference | |
parser.add_argument("--log-dir", type=str, default='./log') | |
parser.add_argument("--model-restore", type=str, | |
default='/data1/chongzheng/zhangwq/Self-Correction-Human-Parsing-master/exp-schp-201908301523-atr.pth') | |
parser.add_argument("--gpu", type=str, default='0', help="choose gpu device.") | |
parser.add_argument("--save-results", action="store_true", help="whether to save the results.") | |
parser.add_argument("--flip", action="store_true", help="random flip during the test.") | |
parser.add_argument("--multi-scales", type=str, default='1', help="multiple scales during the test") | |
return parser.parse_args() | |
def get_palette(num_cls): | |
""" Returns the color map for visualizing the segmentation mask. | |
Args: | |
num_cls: Number of classes | |
Returns: | |
The color map | |
""" | |
n = num_cls | |
palette = [0] * (n * 3) | |
for j in range(0, n): | |
lab = j | |
palette[j * 3 + 0] = 0 | |
palette[j * 3 + 1] = 0 | |
palette[j * 3 + 2] = 0 | |
i = 0 | |
while lab: | |
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) | |
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) | |
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) | |
i += 1 | |
lab >>= 3 | |
return palette | |
def multi_scale_testing(model, batch_input_im, crop_size=[473, 473], flip=True, multi_scales=[1]): | |
flipped_idx = (15, 14, 17, 16, 19, 18) | |
if len(batch_input_im.shape) > 4: | |
batch_input_im = batch_input_im.squeeze() | |
if len(batch_input_im.shape) == 3: | |
batch_input_im = batch_input_im.unsqueeze(0) | |
interp = torch.nn.Upsample(size=crop_size, mode='bilinear', align_corners=True) | |
ms_outputs = [] | |
for s in multi_scales: | |
interp_im = torch.nn.Upsample(scale_factor=s, mode='bilinear', align_corners=True) | |
scaled_im = interp_im(batch_input_im) | |
parsing_output = model(scaled_im) | |
parsing_output = parsing_output[0][-1] | |
output = parsing_output[0] | |
if flip: | |
flipped_output = parsing_output[1] | |
flipped_output[14:20, :, :] = flipped_output[flipped_idx, :, :] | |
output += flipped_output.flip(dims=[-1]) | |
output *= 0.5 | |
output = interp(output.unsqueeze(0)) | |
ms_outputs.append(output[0]) | |
ms_fused_parsing_output = torch.stack(ms_outputs) | |
ms_fused_parsing_output = ms_fused_parsing_output.mean(0) | |
ms_fused_parsing_output = ms_fused_parsing_output.permute(1, 2, 0) # HWC | |
parsing = torch.argmax(ms_fused_parsing_output, dim=2) | |
parsing = parsing.data.cpu().numpy() | |
ms_fused_parsing_output = ms_fused_parsing_output.data.cpu().numpy() | |
return parsing, ms_fused_parsing_output | |
def main(): | |
"""Create the model and start the evaluation process.""" | |
args = get_arguments() | |
multi_scales = [float(i) for i in args.multi_scales.split(',')] | |
gpus = [int(i) for i in args.gpu.split(',')] | |
assert len(gpus) == 1 | |
if not args.gpu == 'None': | |
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu | |
cudnn.benchmark = True | |
cudnn.enabled = True | |
h, w = map(int, args.input_size.split(',')) | |
input_size = [h, w] | |
model = networks.init_model(args.arch, num_classes=args.num_classes, pretrained=None) | |
IMAGE_MEAN = model.mean | |
IMAGE_STD = model.std | |
INPUT_SPACE = model.input_space | |
print('image mean: {}'.format(IMAGE_MEAN)) | |
print('image std: {}'.format(IMAGE_STD)) | |
print('input space:{}'.format(INPUT_SPACE)) | |
if INPUT_SPACE == 'BGR': | |
print('BGR Transformation') | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=IMAGE_MEAN, | |
std=IMAGE_STD), | |
]) | |
if INPUT_SPACE == 'RGB': | |
print('RGB Transformation') | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
BGR2RGB_transform(), | |
transforms.Normalize(mean=IMAGE_MEAN, | |
std=IMAGE_STD), | |
]) | |
# Data loader | |
lip_test_dataset = LIPDataValSet(args.data_dir, 'val', crop_size=input_size, transform=transform, flip=args.flip) | |
num_samples = len(lip_test_dataset) | |
print('Totoal testing sample numbers: {}'.format(num_samples)) | |
testloader = data.DataLoader(lip_test_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=True) | |
# Load model weight | |
state_dict = torch.load(args.model_restore)['state_dict'] | |
from collections import OrderedDict | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k[7:] # remove `module.` | |
new_state_dict[name] = v | |
model.load_state_dict(new_state_dict) | |
model.cuda() | |
model.eval() | |
sp_results_dir = os.path.join(args.log_dir, 'sp_results') | |
if not os.path.exists(sp_results_dir): | |
os.makedirs(sp_results_dir) | |
palette = get_palette(20) | |
parsing_preds = [] | |
scales = np.zeros((num_samples, 2), dtype=np.float32) | |
centers = np.zeros((num_samples, 2), dtype=np.int32) | |
with torch.no_grad(): | |
for idx, batch in enumerate(tqdm(testloader)): | |
image, meta = batch | |
if (len(image.shape) > 4): | |
image = image.squeeze() | |
im_name = meta['name'][0] | |
c = meta['center'].numpy()[0] | |
s = meta['scale'].numpy()[0] | |
w = meta['width'].numpy()[0] | |
h = meta['height'].numpy()[0] | |
scales[idx, :] = s | |
centers[idx, :] = c | |
parsing, logits = multi_scale_testing(model, image.cuda(), crop_size=input_size, flip=args.flip, | |
multi_scales=multi_scales) | |
if args.save_results: | |
parsing_result = transform_parsing(parsing, c, s, w, h, input_size) | |
parsing_result_path = os.path.join(sp_results_dir, im_name + '.png') | |
output_im = PILImage.fromarray(np.asarray(parsing_result, dtype=np.uint8)) | |
output_im.putpalette(palette) | |
output_im.save(parsing_result_path) | |
parsing_preds.append(parsing) | |
assert len(parsing_preds) == num_samples | |
mIoU = compute_mean_ioU(parsing_preds, scales, centers, args.num_classes, args.data_dir, input_size) | |
print(mIoU) | |
return | |
if __name__ == '__main__': | |
main() | |